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Abstract

We show that all strictly convex 1 impurity measures lead to splits at boundary points, and furthermore
show that certain rational splitting rules, notably the information gain ratio, also have this property. A
slightly weaker result is shown to hold for impurity measures that are only convex N, such as Inaccuracy.



1 Introduction

The classification problem can be stated roughly as: given a set of features (or attributes), find a way of
dividing up the feature space into cellssuch that each cell reflects some specified property of the data mapped
to that cell. Finding such a division is non-trivial; the infinitude of ways of dividing up the space effectively
rules out direct enumeration. The complexity of the search can be limited by using a divide-and-conquer
strategy, that is, rather than dividing the feature space all at once into many cells, just divide it into two
cells; each cell can then be viewed as an instance of the original problem, and similarly can be recursively
subdivided.

This strategy necessarily imposes a hierarchical structure on the partition, which cau be viewed naturally
as a tree (specifically, a Decision Tree (Morgan & Sonquist, 1963)). Each node in the tree represents a cell in
a partition of feature space, and each branching represents a division of the space. The cells corresponding
to the leaves constitute a partition of the space.

The divide-and-conquer approach to dividing up the feature space produces a sequence of finer and finer
partitions; as each partition corresponds to a tree, we obtain a sequence of trees

15,11,

Tov consists of a single leaf node representing the entire feature space, and for each 7, 7;4, is obtained from
T; by replacing a leaf node of 7; with an internal (non-leaf) node branching into two new leaf nodes. This
corresponds to splitting a cell in the partition represented by 7; into two new cells separated by a decision
boundary. The process terminates when all cells are pure, that is, consist of data from only one class. To
reduce overfitting, a pruning phase often follows, but we will not be concerned with this here.

So far the tree representation and the feature space representation are entirely equivalent, but it turns
out that abstracting the feature space into a tree has bought us something, namely the ability to handle
non-ordinal (alsocalled categorical) attributes. Asthe nameimplies,such attributes assume values that have
no inherent ordering; it follows that a decision boundary in feature space cannot be used to discriminate
different values of a non-ordinal attribute, as an ordering of values is required to know on which side of the
boundary a given data point falls. Such attributes pose no problem for a tree, however, which can specify
tests on the value on a non-ordinal attribute that. determine which branch to send a data point down. In
this paper we will be exclusively concerned with ordinal (also called continuous) attributes, which assume
values that. have a natural ordering.

To construct a decision tree, we must answer the following questions: Given a tree 7;, which leaf of T;
should be split? and how?

The answer to thefirst question, which leaf to split, is: it doesn't matter. For if we assume that

e splitting continues until all leaf nodes are pure, and
e when splitting a leaf node t, the splitting rule doesn't look at any other leaves,

then the sametree is obtained regardless of the order in which leaves are split (Dietterich, Kearns, & Mansour,
1996).

The second question, how to split, is still unresolved, judging from the extensive and growing literature
on thesubject (Breiman, Friedman, Olshen, & Stone, 1984; Brodley, 1995; Buntine & hiblett, 1992; Fayyad,
1994; Fayyad & Irani, 1990, 1992a, 1993; Goodman & Smyth, 1988; Lépez de Méntaras, 1991; Lubinsky,
1995; Quinlan, 1990, 1996; Quinlan & Rivest, 1989). The accepted method is to select from a finite set of
candidate splits that which minimizes a splitting rule.



The splitting rules we consider are based on an impurity function I, which measures the impurity of class

labels in each leaf. For aleaf t with N; training samplesfrom classz, for i = 1,..., m, the fraction of class ¢
labels is
_ N
Pi="N
where N = N, + ...t N,,. Then the impurity of leaf t is defined as
Ity = I(p1,.--Pm)
= 1(p)

where p'is the class purity vector, defined by

i)‘: (leu»Pm)

We consider splitting rules of the form

Choose the split that minimizes f = %I(u) + %I(m) (1
where the minimization is carried out over aset of candidate splitsof leaf t into leavest; and tg (|t| denotes
the number of training samplesint and similarly for |tz | and [tg]).

The splitting rule (1) can be justified on the basis of choosing the split that minimizes the expected
impurity of the resulting tree with respect to the distribution of training data, which for a tree T is defined

_ l¢]
ENT= > O
teleaves(T)
where [¢| is the number of training samples in leaf t, I(¢) is the impurity of this leaf, and leaves(T') is the

set of leaf nodes of T. If T;4; isthe tree produced by splitting a leaf t into leavest; and tg, the expected
impurity can be written

t t t
BUTa) = BT+ ) 4+ B2l - B
[te] [tr]

= srml+ i (

Because 7; and the lesf t to be split are fixed, the split that yields the tree T;,; of smallest average impurity
is (1).
A variety of impurity functions have been proposed, including

e |naccuracy, in which all samplesother than those belonging to the majority class are counted aserrors:

Inacc (p1,...,pm) = 1 — maxp;
1

e Gini (Breimanet al., 1984):
Gini (p1,...,pm}=1- Zp,z
i



e Entropy? (Lewis, 1962; Sethi & Sarvarayudu, 1982):

m

Ent (p1,...pm) = Z —pi log(pi)

i=1

Entropy has become the impurity measure of choice, having found application in learning algorithmssuch as
ID3 (Quinlan, 1983) and CN2 (Clark & Niblett, 1989). Representing the collection of training data by a tree
introduces uncertainty in the sense that training samples mapped to the same leaf become indistinguishable
from the point of view of the tree. Entropy isin some sense a measure of this uncertainty; if we use the tree
to estimate the class label of a sample X drawn from the same distribution as the traini ng data by outputting
class label i with a probability equal to the proportion of class i samplesin the leaf containing X, then the
entropy of the tree is the number of bits it would take, on average, to correct the output of the tree.® Since
partitioning a set reduces the number of possible arrangements, or equivalently, reduces its randomness, the
decrease in entropy following a split reflects the additional information we have concerning the class of a
sample; hence the amount by which the entropy is reduced following a split is called the information gain®
(Quinlan, 1983):
information gain = Ent(t) — (l—TtLTlEnt(tL) + %Ent(h{)) (2)
Decision tree induction can be viewed as a process of driving the uncertainty in the class labels to zero.
A reasonable splitting rule is thus to choose the split that maximizes the information gain, or equivalently
(since t isfixed), minimizes
f= %Ent(u) + ““—R”Ent(tg) (3)
It has been observed that the information gain favors attributes that take on a larger set of values over
the training set (Quinlan, 1990). To counteract this tendency, Quinlan normalized the information gain
by dividing it by the information gained by knowing which of ¢; or tg contains a given sample, yielding a
quantity he called the information gain ratio (Quinlan, 1990):

information gain
el )og (It_Ll) — Lal g (Eﬂ;‘.

T 3 [¢] [#]

information gain ratio =

@
)

Fayyad and Irani showed that entropy alwayscuts at boundary points®  (Fayyad & Irani, 1992b). Asthis
is a consequence of the splitting rule having no local minimaover uniform sequences (a sequence of samples
belonging to the same class), we refer to this as the minima-free property. We show that this property holds
not only for the entropy impurity measure, but for all strictly convex N impurity measures. This property
is of interest for several reasons:

?Using the Entropy impurity measure in (1) is equivalent to choosing the split that maximizes the mutual information
between the attributes and classes, which was the method used in (Lewis, 1962; Sethi & Sarvarayudu, 1982).

3This assumes that entropy is defined in terms of base 2 logs. We assume for the remainder of the paper that entropy is
defined using base e logs, so that information is measured in nats, not hits. This is done without loss of generality to simplify
differentiation.

4This is the reduction in entropy relative to the leaf t. The reduction in the average entropy of the tree is
%L (Ent(t) - ( ttl Ent(t;) JllﬁiEnt(tR))) = %L information gain.

5A rough de#inition of a boundary point is a point between samples belonging to different classes.

6In this paper we shall sometimes blur the distinction between splitting rules and impurity measures, so that the phrase
"entropy always cuts at boundary points" should be interpreted as "the splitting rule that uses entropy as an impurity measure
always cuts at boundary points"”.



e Efficiency - if it can be shown that the splitting rule being used cuts only at boundary points, then
only boundary points need to be considered as potential cut points. This can represent a substantial
savings in computation (Fayyad & Irani, 1992b).

e Accuracy - Intuition suggests that splitting rules that cut at interior points (i.e. non-boundary points)
result in a finer partition of the space, and thus a larger tree, than splitting rules that disallow such
cuts; such overfitting may lead to a reduction in predictive accuracy. Thisintuition issometimeswrong;
as Figure 1 shows, splitting between samples of the same class can occasionally lead to a smaller tree.
However, this example does not change the fact that it is difficult to justify, on the basis of a one
dimensional projection of the data along some attribute, cutting at an interior point rather than a
boundary point, as we have no way of distinguishing the situation depicted in Figure 1, where it isa
good idea to cut at an interior point, from the myriad other situations in which it is a bad idea.

e Insight - Knowing something about where a splitting rule splits may lead to a deeper understanding
of its weaknesses, laying the groundwork for new splitting rules that address these weaknesses.
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Figure 1: An exampleshowing that cutting between samples belonging to the same class is not always a bad
idea. (a) Hand-drawn partition that cuts between samples of the same class. (b) Entropy-guided partition
that does not.

The organization of this paper is as follows: Sections 2 (mathematical preliminaries) and 3 (notation)
provide a framework in which to discuss the theorems and proofs presented in Section 4; the theory is then
applied to specific splitting rules in Section 5.

2 Mathematical Preliminaries
The following is intended as a brief review.

Definition 1 A function f defined on a convex set 2 is convex 1 ¢f for all 5,5 € Q and for all A € [0,1]

JAAZ+ (1 =X)g) 2 Af(&) + (1 - A f(9)



Definition 2 A function f defined on a conver set  is strictly convez N if for all Z,§€ Q, £ # ¢, and for
all Ae(0,1)

FAZ+ (1 - N9 > AfE) T (1 - N f(@)

Definition 3 The Hessian matrix V21 of an impurity function I(py, ... ,Pm) isthe matrix of second deriva-
tives dejined by
327 3%r 821I
9p19p1 3p10p2 3p18pm
Ml | I I
3p20 3p20 3p20Pm
v?f = Pz0P1 pz_ P2 P2.P
3% 8% 821
Opmdp1  Opmdp2 OpmOpm

Fact 1 (Negative semidefinite matrices (Strang, 1988, p. 339))
The following are equivalent:

1. The matrix M is negative semidefinite.
2. All eigenvalues of M are < 0.

3. ZFTMz <0 for all £.

Fact 2 (Negative definite matrices (Strung, 1988, p. 331))
The following are equivalent:

1. The matrix M is negative definite.
2. All eigenvalues of M are < 0.
3. #FTMz <0 for all £+#0.

Fact 3 (Relation between strict convexity and negative definzte Hessian (Peressini, Sullivan, & Uhl, 1988,
P 54))

For a function f dejined on a convex set €2, if the Hessian off is negative definite, then f is strictly convex
n.

Fact 4 (Relation between convexity and negative semidefinite Hessian (Peressini et al., 1988, p. 54))
For a function f defined on a convex set §2, f is convex N ¢f and only if its Hessian is negative semidefinite.

Fact 5 (Conditions for a Minimum (Peressini et al., 1988, p. 3))
A point z* is a strict local minimum of a function f(z) if f/(z*) =0 and f”(z*) > 0.

3 Notation

The following strategy for partitioning a leaf t into leaves t; and tg was used in (Breirnan et al., 1984):

1. For each attribute A, project the training samples down to the A-axis and evaluate the splitting rule
f at all points that are halfway between adjacent training samples. Let f(c(A)) denote the minimum
of the splitting rule over all such points, where ¢(A) is the point that achieves the minimum.



2. Split along the attribute Ay that minimizes f(¢(A)) (i.e. Ao = argmina f(c(A))) at the cut point
¢(Ap). Thisdefines a decision boundary (actually a plane) in feature space that splitst into ¢, and ¢g.

The process of projecting the training data down to the A-axis produces a sequence:

Definition 4 A sequence is an ordering of the samples contained in some interval after projecting the
training data onto a feature space axis corresponding to some attribute A, or more generally, onto an arbitrary
vector in feature space.

We will be particularly concerned with sequences of samples that al belong to the sanie class:

Definition 5 A uniform sequence is a sequence that contains only samples belonging ¢o the same class.

We assume we are at the stage of the above algorithm where we are selecting the best cut point for some
tribute A. Let N denote the number of training samples in the node to be split, and let the variable
denote the position of the cut point along A. Since the splitting rules we consider depend only on the

number of samples of each class on each side of the cut point, and not on their actual positions, without
loss of generality we can assume that, after sorting the N training samplesin order of increasing A, the first
sample occurs at n = 0.5, the second at n = 1.5, and so on. Then the set of cutsat n=1,..., N — 1 exhaust
all possible ways of cutting between adjacent samples.

We have assumed here that the values produced by projecting the data onto the A axis are unique, that
is, there are no repeated values. We will develop the theory under this simplifying assumption, and then
show in Section 4.6that the theory remains valid even when repeated values are allowed.

Many of the results in this paper relate to boundary points, which, for the restricted case we are consid-
ering (no repeated values), can be defined as follows:

Definition 6 Given a sequence of training samples, a boundary point is a point between samples belonging
to different classes.

Later, in Section 4.6,we shall give a more precise definition which also applies to the case of repeated values.
We assume that each training sample belongs to one of m classes, numbered from 1 to m. For a given
cut point n, we define, fori =1,...m

L;(n) = the number of class : samples to the left of n.
Ri(n) = the number of class: samples to the right of n.
L(n) = thetotal number of samplesto the left of n.
R(n) = thetotal number of samplesto the right of n.
£;(n) = thefraction df class i samples to the left of n.
L,‘ (TL)

- I
ri(n) = thefraction of classi samples to the left of n.

_ R,-(n)

~ R0

Figure 2 may help to make this notation more concrete.

-

Collect the fractions £;(n) into a vector £(n):

F(TL) = [fl (Tl) Zg(n) Zm(n)]T



L) = 17 R(n) =
Li(n) = 8 o’s Ri(n) =
Ly(n) = 9 +7s Ry(n) =

N

13
6 o’s

7 +’s

0 n
0

n
x z

Figure 2: Notation used for model.

Then the impurity of the samples to the left of n is

I(£1(n), €a(n), ... £n(n))
which we condense to
1(£(n))
Collect the fractions r;(n) into a vector #(n):
F(n) = [r1(N)ra(n) ... P (0)]T

Then the impurity of the samples to the right of n is

I(r1(n),ra(n), ... Tn(n))

which we condense to
1(7(n))
The splitting rule (1) becomes

f(n) = 1@ F (1 = $)I(F))

{+ooo+++o+oooo++4ﬁ++++oo+ooooﬂ

n=N
=1

(5)

We introduce the continuous variable x = n/N so that we can use calculus to investigate the necessary and
sufficient conditions for f to have a minimum. Substituting n = Nx into (5), we have

B vy + B r(vay)

f(NX): W

which becomes

f(z) = eI(€(z)) T (1 - 2)I(7(x))

under the followingidentifications:

f(x) f(n)evaluated at n = Nx.
fz) = £(n)evauated at n = Nx.
7(z) = 7(n) evaluated at n = Nx.

Note that:

(6)



e Asx variesfrom 0 to 1, n variesfrom 0 to N.

- —

e /(n) and 7(n) (and hence £(z) and 7(z)) take on values in the "purity space"
m
Q= {(ph‘..,pm) : 0 < p; < 1forall 4, and Zp,- = 1}
i=1

We shall sometimes write f (x;1) in place of f (x) to make explicit which impurity measure is being used

4 Theorems and Proofs

In this section we show that:
e Splitting rules based on strictly convex N impurity measures cut only at boundary points.

e Splitting rules based on strictly convex N impurity measures are strictly decreasing over the first
uniform sequence and strictly increasing over the last.

e The set of global minimizers of splitting rules based on convex N impurity measures includes at least
one boundary point, but may also include all interior and boundary points of one or more uniform
sequences (see Figure 3).

e Splitting rules based on convex N impurity measures are non-increasing over the first uniform sequence
and non-decreasing over the last.

e Splitting rules of the form

F(x):ﬂ

h{z)
cut only at boundary points, under certain conditions on g and h.
e The above results hold even when repeated values of an attribute occur over the training data.

Below we develop a model for how impurity-based splitting rules behave over uniform sequences; this model
forms the basis for many of the results in this paper.

NS

-4+4+4+0000000+ + + -

Figure 3: Hypothetical behavior at minimum of splitting rule f(x; |) for a convex N innpurity measure |



4.1 A Model for Impurity-Based Splitting Rules over Uniform Sequences

We are interested in studying how the splitting rule behaves as the cut point is varied within a sequence of
samples belonging to the same class. We choose one such sequence, assumed to extend from n, to n, and
to consist entirely of samples from class k. We fix a reference point at some position :no within the chosen
sequence, and define, for 1< i < m:

L; the number of class i samples to the left of no.
R; = thenumber of classi samplesto the right of no.
L = thetotal humber of samplesto the left of ng.

R = the total number of samples to the right of ng.

Figure 4 may help to make this discussion more concrete.  For an arbitrary position n within the uniform

L = 17 R = 13
Li = 8 o’s Ry, = 6 o’s
Lo = 9 +7s R, = 7 +’s

T$+o °oo4++0+000 oT+++T$++++To OT+O 000+

—

n=0 Nmin Na o Ny Nmax n=
z=0 Tmin Zg Ip Tmaz r=1

Figure 4: Notation used for model.

sequence [ng, ns], the number of class k samples to the left and right of n are respectively n — L+ Lx and
L — nt Ry, while the number of class i samples to the left and right of n are respectively L; and R;, for
i # k. The number of samples to the left and right of n are respectively nand N — n. The fraction of the
samplesto the left of n that belong to class i is

L .
= 17k
fi(n) = { 1?—L+Lk zi k

Collect these fractions into a vector £(n):

-

fin) =[6(n)ee(n) .. ()]
Then the impurity of the samplesto the left of n is
I{t1(n), &2(n), ... £m(n))
which we condense to -
1(£(n))
The fraction of the samples to the right of n that belong to classi is

( #5, i7!

ri(n) = LontRe =

o
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Collect these fractions into a vector #(n):
F(n) = [ (n) r2(n) ... rm ()]
Then the impurity of the samplesto the right of nis
I(ry(n), r2(n), ... rm(n))

which we condense to
I(7(n))

Then our discrete model of how the splitting rule (5) varies as a function of the cut point n is

n -~ n .
f(n) = 1te(n)) + (1 = ) (r(n)) (8)
where [(n) and 7(n) have components
Li itk
z1'("') = { r?—l;l-{rLk lik
AN
- 2=Nmin ; — k
and
R; i fk
n) = { Ten o4
N—-n -
{ R; i fk
_ N—n
Rpaz =k
The model is valid for n = Ma,...,ng, since n, and n, mark the boundaries of the uniform sequence of

interest. The quantities nm,in and n,., appearing above are defined by

Nmin = L-— Ly
Mmer = L+ Ry

nmin IS Where the sequence would begin if all class k pointsto the left of the sequence were contiguous with
it, and thus represents a "worst case’™ starting point for the sequence. Similarly, nn,q- is where the sequence
would end if all class k points to the right of the sequence were contiguous with it, and thus represents a
"worst case" end point for the sequence.
As before, to get a handle on what is happening between the sampleswe introduce the continuous variable
= n/N and substitute n = Nx into the above expression to get

N- Nx )

f(Nx)= %[(E(Nr)) N (7 (Ve (9)

7Or best case, depending on how you look at it.



-

where ¢(Nz) and #(Nz) have components

# i#k
L(Nz) = {%fv—uLk ifk
Nz -

L .
_ N i#tk
- { P i

L

_ | & itk
B { 1 Lmin =}

and

r;(Nz)

|
| Bl 12
{

The quantites z,,;, and z,,,, appearing above are defined by

L1,

Tmin = T

. L+ R
mar - N

zmin 1s Where the sequence would begin if all class k points to the left of the sequence were contiguous with
it, and thus represents a "worst case” starting point for the sequence. Similarly, z,,4- iS Where the sequence
would end if all class k points to the right of the sequence were contiguous with it, and thus represents a
"worst case" end point for the sequence.

Under the identifications

f(x) f(n)evaluated at n = Nx.
) = £(n)evaluated at n = Nx.
#(z) = (n) evaluated at n = Nx.

our continuous model of how the average impurity varies as a function of the cut point x becomes

f(x)=2I(f(z)) T (1- x)I(7(2)) (10)

-

where £(z} and 7(z) have components

fi(ﬂf):{% . Tk

1—Imin j—f




and

12

R .
IE k
ri(2) ={ A

Lmaz—l ] i=k

The model is valid for x between x, = 5¢ and z, = 3, since X, and x, mark the boundaries of the sequence
of interest in x-coordinates.

4.2

Strictly Convex N Impurity Measures

The main result of thissection is

Theorem 4.1 |If the impurity measure | is strictly conver N on

Q={(p1r....,pm): 0<pi<1foralli, and Y pi=1)

=1

then the set of global minima of the splitting rule

fni1) = L I(Em) + @- $I16(m)

consists entirely of boundary points.

Proof: The proof consists of the following steps:

We first show that f (x), the continuous analog of f (n),is strictly convex N over uniform sequences
(Lemma4.l).

We then show that the convexity off (x) over a uniform sequence impliesthat f (n) attains itsminimum
at a boundary point of the sequence (Lemma4.2).

Lemma 4.1 does not apply to the first or last uniform sequences, as the model breaks down when
x =0 or x = 1. We handle these special cases by showing that f(n} is strictly decreasing over the
first uniform sequence (Lemma4.5) and strictly increasing over the last (Lemma4.6), so that over any
uniform sequence, f (n) attains its minimum at a boundary point of the sequence.

Finally, Lemma 4.7 shows that if over any uniform sequence f (n) attainsits minimum at a boundary

point of the sequence, then f(n) attains its global minimum at a boundary point (note however that
the global minimum is not necessarily unique).

O

Wefirst show that f (x) isstrictly convex N over uniform sequences:

Lemmad4. 1 If the impurity measure | is strictly convex 0 on

m
Q=A{lp1,...,pm): 0< pi <1 foralli, ande,-:l}

i=1

then for all points x,, =z, that delimit uniform sequences, the splitting rule f(z) is strictly convex N on
[X,, ], where 0 < x, <z < 1.
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Proof: Let X,y € [X,, zp], X # y,and A€ (0,1). Toshow that f(z) isstrictly convex N, we must show
that
f(Az + (1 - A)y) > Af(e) + (1 - A)f(v)

or, expanding f in terms of |, that
(Axt (1= NI T (1- X)) T (1- Oz + (1= 2)y) IFO= + (1 - A)y))
> A (21(@@) + (1 - 2)I(F)) + (1 - A (@) + (1 - HIE))
or, after rearranging terms, that
Azt (1N IRt (1 - Ny) T (1 - Ozt (1= Ny) IFRz+ (1 - A)y)
> (/\xf([( ) + (1 - Nyl (Ely ))) + (A1 - 2)I(F=) + (1 - XA - »I(F(Y)
Thisistrue if
(AT (1= ) I(EAz + (1= V) > Ael(@a) T (1- NyI(E) (11)

and

(1- (et (1= M) IFQT (1 - A)g) > A1 = 2)I(7(z)) T (1 - A)(1 - »)I(F(y)) (12)
These are verified in Claims 1 and 2.
Claim 1 (11) holds.
Let
T= X+ (1= Ny

Claim 1la 0<gx 1.
0<x,y,A< 1limplies0 < Ax* (1- )y < 1 and the claim follows.

Claim 1b e );éf( ).
Assume that £(z) = £(y). There exists an i such that L; # 0. If i # k, then

Ly L
Nz Ny
which yields x =y, a contradiction. If ¢ =k, then
Tmi Lomi
1_ min —1_ min
X Y

which again yields z = y. Thusin either case we get a contradiction, so we must have [(x) # [(y).

Since | isstrictly convex N, 0 < q< 1, and {(z) # F(y), we have

— —

I(gf(z) + (1 — 9)(y)) > qI(€(x)) + (1 — ) I(£(y)) (14)
Since
Az
t-¢ = 1= Az + (1 - Ay
_ (1-Ny
oAz + (1= Ny (15)
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the argument o the impurity measure on the left of (14) becomes

- . z . 1-Ny
g(z) + (1 - g)tly) = (,\I—HAW)M”(,\x(+(1—)yA)y,)f(y)

— —

Azb(z) + (1 — N)yt(y)
Az + (1 - Ay

We now show that

- -

Azf(x) + (1= Nytly) _ (e + (1 - \)y)

Az + (1 =Ny
For i # k
Aebi(e) + (1= Nti(y) _ Arws + (1= Nyiy
Az + (1 - Ay B Az + (1 - M)y
A+ (=N
T T +(1-Ny
L;
_ N
Az 4+ (1= Ay
T ON(Az+ (1= A)y)
= L(z+(1-Ny)
and for i = k
Aeli(z) + (1= Agle(y)  Ae(l—Tmin) 4 (1-A)y(1 - T
Az + (1= Ay B Az +(1-Ay
Az — Azmin + (1 =Ny — (1 = Nmin
- Az + (1= Ny
A+ (1= Ny —Azpin — (1 - A)&nin
B e+ (1= XNy
Ar + (1 - /\)y —~ AL pmin — Tmin + AZmin
- Az + (1— Ay
A+ (1 =Ny — Zmin
- At (1- Ay
- 1-— Tmin
xz T (1- Ny

= LAz + (1= Ny)
so that (17) holds. (16) and (17) imply

- -

. . rl(z 1=yt
gb(z) + (1 - q)lly) = . e(,\zj:ﬁl—/\gz =

Ldz + (1 - Ay)

I

(18)
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Substituting (13), (15), and(18) into(14) gives

. Az , (1-Xy -

I{t(Az + (1= A)y)) > m[( (£)) + - T /\)y[(f(y))

or, multiplying thru by Az (1 - Ay #0
(Az + (1= Ny)[(EQz + (1= V) > Al () + (1 = NyI(E(y))
as claimed.

Claim 2  (12) holds.
Let A1 )
— X
= (

T 1=z +(1-A)y) (19)

Claim 2a 0<g< 1.
0<x,y.A<limpliesO< Az+(1-A)y <1, whichinturnimpliesthat 0 < 1—(Az+(1-A)y) <1
and hence that ¢ > 0. We show that ¢ < 1 by contradiction. Assume that ¢ > 1. Then

Al —z)
= (e +(1-Ny) = '
Al—2)>1~(Az+ (1—Ny)
A=Az >1-2dz—(1-MN)y)
(I=-Xy>1-2A
y=>1

g>1

L

which is a contradiction. The claim follows.
Claim 2b 7(z) # 7(y).
Assume that 7(z) = 7(y). There exists an ¢ such that R; # 0. If i £k, then
R; _ R;
N(l-z) N(l-y)

which yields x =y, a contradiction. If i =k, then

Tmazr — 1 Tmaz — 1
1 =1
+ 1—-=2 + 11—y

which again yieldsx =Y. Thusin either case we get a contradiction, so we must have r(z) # 7(y).
Since | isstrictly convex N, 0 < ¢ <1, and 7(z) # 7(y), we have
I(gr(z) + (1 — q)7()) > I (7(<)) + (1 — )1 (7(v)) (20)

Since

Al —2)
T 1-(Qz+ (1-2y)

1—-¢ =1
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1— (Ax+(1=-ANy) = A1l-12)
1—-(AxT $1-2)y)
I Ax—(1-XNy—- A+ Ax
1—(AxT (1-Ay)
(1- A)—-(1- Ay
1- (Ax+(1— A)y)
(1M1 -y

o1 (axt - 0

the argument of the impurity measure on the left of (20) becomes

g} o (L= z) B} 1-N1-y .
g7(z)+ (1 - g)7(y) = (1 —z+ (- )\)y)) (=) + (1 —(Az+(1- )\)y)) ")
A1 = z)f(z) + (1 = A)(1 — )7 () (22)
I-(Az+(1-MNy)
We now show that

A= 2)2) + (1= N =) _ o0+ 1y (23)

L— (Ax T (1-X)y)
For ¢ £ k

A =z)ri(z) + (1 = N1 - y)ri(y) M= 2)giig + - N1 -y 5y
I—(Az+(1-XNy) 1—(Az+(1=Ny)

- AR a-n&_
1 (AxT (1= A)y)
Ry
N

1 (AxT (1= A)y)
R;
N(I—(Az T (1-M)y))

= r(Az+(1-ANy)

and for i = k

A1 = 2)ra(@) + (1= A (1 — y)r () A1 -z)(1F Fmez=2) 4 (3 _ 2)(1 - y)(1 F Zmaz=t
1_(Ax+(1_A)y) 1—(Ax+(l—)\)y)
M=)t A@mar — DT AN —y) + (1= M) (@mas = 1)
1 (Axt(1- Ay)
)\(1 —.’L‘) + (1 - )\)(1 - y) + (l'ma:c - 1]‘
1- (AxT (1= M)y)

_ /\(l—X) (I_A)[l_y‘L + Toar — 1
Toa-(AaxTF (=N - (AaxT(-Ny 11— (AxT(1-A)y)
= ¢+(1-gq)+ Zmoz — 1

1—(Az+(1—=Ny)
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Lmar -1
1 - (AxT (1= Ny)
= Azt (1-Ny)

so that (23) holds. (22)and (23)imply

- 14

i)+ (1—ily) = 22 Il)’ff();f& j)gy; Y7(y)

= FOz+ (1-Ny) (24)
Substituting (19), (21), and (24)into (20) gives

70+ (1= 00) > 1 s o T(700)) + T i Ty )

or, multiplying thru by 1— (Ax+ (1= A)y) £ 0
(1- (At (1= V) IEQe T (1= Ny)) > A1 - 2)I(7(2) T (1 - N1 - »)I(F(y))
as claimed

Thus we have shown that f(z) isstrictly convex M on [zq, 2], as required. ]

We next show that convexity of f(x)over a uniform sequence implies that f(n) attains its minimum at a
boundary point of the sequence:

Lemma4.2 If f(z) is strictly convex N on [z.,z], then f(rn) attains its minimum at a boundary point,
that is, at either n, or ny.

Proof: Let £, denote the line segment connecting the points (z,, f(zs)) and (zs, f{zs)). We have three
cases to consider:

Case 1 f(za) < f(2s)

In this case, £, has positive slope (see Figure 5). Since f(x) is strictly convex 0, it lies above this
linefor all x € (x4, 2); consequently

f(xq) < f(x) for dl X € (zq,zs)
which implies, since f(n)isjust f(x) sampled at the points %, that

f(na) < f(n) foralln € {ns+1,...n}

Case 2 f(zq) > f(zs)
In this case, L., has negative slope (see Figure 6). Since f(x) isstrictly convex M, it lies above this
linefor all x € (z,4, zs); consequently

fzy) < f(x) foral « € (x4, zs)

which implies,since f(n)isjust f(x)sampled at the points %, that

f(ne) < f(n) forallne{n,, ...np — 1}
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Figure 5. Case 1: f (z4) 4 f (2s).
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Figure 6: Case 2: f (z4) 3 (2)

Case 3 f(za) =1 (z)
In this case, £, has zero slope (see Figure 7). Since f (x) is strictly convex N, it lies above Las for all
X € (Zq,2p), 1.€.

f(24) =f (zp) < f(2) for all z & (x4, zs)

which implies, since f( n) isjust f(x) sampled at the points %, that

f(ng) =f (ny) <f(n) foralnE{nst1,.. n—1}

In al cases, f(n) attains its minimum at one of the boundary points, either n, or ny. O
The next two lemmas will be used to show that f(n) isstrictly decreasing over the first uniform sequence
and strictly increasing over the last.

Lemma43 For n=1,...N -

7(0) = &N) = Ll + (1- &) ()
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F(@e) F-mmmmmmmmm e

f(xa) = f(l'b) b

Figure 7: Case 3: f (z4) = f(zs).

—

Proof: Note that 7#(0) = £(N) is the purity vector of the entire sequence of data at the node to be split.
For any n, we have for each class i

Li(n) + Ri(n)
N
L(n) L;i(n) N R(n) Ri(n)
N L(n) = N R
v

r;(0) =

£i(n) +
= %&-(n) + (1 - N) ri(n)

which proves the result. a

The next lemma, due to Breiman et al. (Breiman et al., 1984), shows that splitting a node can never increase
the average impurity:

-

Lemma44 Forn=1,...N - 1,if £(n) # #(n) then

Proof: By Lemma4.3, we have for each n

7(0) = AN) = 2m) + (1 - 3 ) )

Thusfor £(n) # 7(n)

f(0)

[l
ey
—_
Sy
—_
<o
N
=
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since | isstrictly convex N. Likewise

Il
—~

as required. O
We next show that f (n) isstrictly decreasing over the first uniform sequence:

Lemma 4.5 Let n, be the right boundary point of the first uniform sequence. Then forn=1,...ns

Af(n) = f(n) - f(n—1) <0 (25)

—

Proof: Assuming that the first uniform sequence consists of samplesfrom class k, £(1) = €, where €; isa
# £

vector of length m with a1 in the k** position and zeros elsewhere. Furthermore #{(1) # £(1) (otherwise the
node to be split would consist purely of class k samples),so by Lemma 4.4

f(1) - £(0) <0
Thus (25) holds for n=1. For n > 2, Lemma 4.3 implies that

";[15(71_1)+ (1-"];1) F(n—l):%[(n)+(l—%) #(n) (26)

Since n < ny, Niseither within the first uniform sequence or is a boundary point of that sequence. It follows

-

that for 2 < n < ny, #(n) = €(n — 1) = &, so (26) becomes

S+ (15 f b = T+ (1- ) o

N — 1 1 N —
—]:[l—-l—_——f’(n 1) = vin) + = "7(n)
. _ 1 - N-n
Fln—1)= N—n+1£(n)+N—n+1r(n)
Since 7(n) # F(n) (otherwise the node to be split would consist purely of class k samples), it followsfrom
the convexity of | that
- _ 1 - N-n
IFn-1)) = 1 (N—n+1£(n)+N—n+1r(n))
1 - N-—n .
> o ) + g 1)
N—n+1_ | R N-n_, _
v L(Fn=1) > SItn))+ ———1(n))



_on—{n-1) = N .
= 2202 Dy + L asn)
= RHEm) - 1) + S ()
= RI(En) - 1 1) + ()
" = 1)+ (1= 2 160 - 1) > ) + (1- ) 1)
and thusf(n — 1) > f(n), as required. a

We next show that f (n) isstrictly increasing over the last uniform sequence:
Lemma 4.6 Let n, be the left boundary point of the last uniform sequence. Thenfor n =n, +1,..N
Af(n)= f(n) = f(n—1) >0 (27)

Proof: Assuming the last uniform sequence consists of samples from class k, F(N — 1) = &, where €k is
a vector of length m with a 1 in the k" position and zeros elsewhere. Furthermore 7(N — 1) # {(N — 1)
(otherwise the node to be split would consist purely of class k samples),so by Lemma4.4

f(N) = f(N-1)>0

Thus (27) holdsfor n= N. For n < N - 1, Lemma4.3implies that

n - ny > v n—1z n—1\_
N_g(n)+<1_.ﬁ)r(n)_ fin-1)+ @ - 5 )r(n—l) (28)

N

Since n > n, + 1, n is either within the last uniform seguence or is a boundary point of that sequence. It
followsthat for n, 1< n< N -1, #(n) = 7(n — 1) = &, o (28) becomes

2y + NT"]:(n —y="2 LVin-1+ %F(n ~1)

- n—1

n
N N

[(n -1+ %f'(n -1)

or
- n—1-

I(n) = Tt(n—1)+ %F(n -1)

-

Since 7(n — 1) # £(n — 1) (otherwise the node to be split would consist purely of class & samples), it follows
from the convexity of | that

1(#(n)) 1(";1z“(n_1)+ %F(n—l))

n—1

I(f(n - 1)) + %I(F(n - 1)

n
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no - , 1
SR = T=I(En - 1)+ 217 - 1))
= "];11(5(n_1))+ W =n+ 1]3,‘(N ™) (7 1))
- "];lz(e“(n-l)” N‘]:;’L Lin = 1)) = Y= 17 - 1))
= ”J; LiEn=1)) + (1 - "N 1) I(F(n - 1)) — (1 - l) I(7(n))
%I([(n)) + (1 - %) I(7(n)) > ";, L 1(@n - 1)) + (1 - "]; ) [(F(n ~ 1))
and thus f(n)> f (n - 1), asrequired. O

The next lemma connects the global behavior of f (n) to itslocal behavior over uniform sequences:
Lemma 4.7 The set of global minimizersoff (n)includes only boundary points.

Proof: Assume not. Then a global minimum occurs at an interior point ng of a uniform sequence. This
uniform sequence cannot be the first or last, as we have shown that f(n) isstrictly decreasing over the first
(Lemmad4.5) and strictly increasing over the last (Lemma4.6). For any other uniform sequence, Lemma4.2
shows that f(n) issmaller at one of the boundary points n; of this sequence than at any interior point, so

f(no) > f(ns)
and np is not a global minimum, which is a contradiction. The lemma follows.

This completes the proof of Theorem 4.1.

4.3 Convex N Impurity Measures

The main result of this section is

Theorem 4.2 If the impurity measure | is convex N on

m

Q={(p1,....,pm): 0<p;<1foralli,and Zp,-:]}

i=1

then the set of global minima of the splitting rule f (n) includes at least one boundary point, but may also
include all interior and boundary points of one or more uniform sequences (see Figure 3).

Proof: The proof consists of the following steps:
e Wefirst show that f(z) isconvex N over uniform sequences (Lemma4.8).

e We then show that the convexity of f(z) over a uniform sequence implies that f(n) either attainsits
minimum at a boundary point of the sequence or is constant over that sequence. (‘Lemma4.9).
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e Lemma4.8 does not apply tothe first or last uniform sequences, as the model breaks down when x =0
or x = 1. We handle these special cases by showing that f(n) is non-increasing over the first uniform
sequence (Lemma 4.11) and non-decreasing over the last (Lemma4.12), so that over any uniform
sequence, f (n) either attains its minimum at a boundary point of the sequence or isconstant over that
sequence.

e Finally, Lemma4.13 shows that if over any uniform sequence f(n) attains its minimum at a boundary
point of the sequence or isconstant over that sequence, then the set of global minimadf f (n) includes
at least one boundary point, but may also include all interior and boundary points of one or more
uniform sequences (hence the global minimum is not necessarily unique).

O
Wefirst show that f (x) is convex N over uniform sequences:

Lemma 4.8 If the impurity measure | is convex N on

Q={(p1,...,pm): 0<pi<dforali, and Y _pi=1)

1=1

thenfor all points x,, x, that delimit uniform sequences, the splitting rule f (x) is convex N on [z, z»], Where
0<z, <zp <1.

Proof: Replace “>” with “>” in the proof of Lemma 4.1. a

We next show that convexity of f (x) over a uniform sequence implies that f (n) either attains its minimum
at a boundary point of the sequence or is constant over that sequence:

Lemma 4.9 Iff (z) is convex N on [X,, xs], then f(n) either attains its minimum at a boundary point, that
is, at either n, or ns, or isconstant for n € {n,, n, +1,... ns}.

Proof: Let £,, denote the line sesgment connecting the points (za4, f(z.)) and (z», f(xs)). We have three
cases to consider:

Case 1 f(za) < f(xs)
In this case, £, has positive slope (see Figure 5). Since f(x) is convex N, it lieson or above this line
for al « € (x,, »); consequently

f(ze) < f(z) forall x € (zq, zs)
which implies, since f (n) isjust f (x) sampled at the points %, that

f(n) <f(n) foraln€{nat+1, . n}

Caze  f(za) > f(zs)
In this case, L, has negative slope (see Figure 6). Since f (x) is convex N, it lies on or above this line
for al x € (x4, 2p); consequently

f(zy) < f(z) foral z € (za,xp)
which implies, since f(n)isjust f(x) sampled at the points %, that

f (ny) < f(n) for al n E {na,...ns — 1}
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Case 3 f(z4) = f(zs)
In this case, £,, has zero slope (see Figure 7). Let z. be any point between x, and z» for which

f(z.) > f(z,). If thereis no such point, then f(x)is constant on [z,,zs], and consequently f(n),
which isjust f(x)sampled at the points %, is also constant for n € {n,, ...ns}.

If there issuch a point, let £,. denote the line connecting (z,, f(z4)) and (z., f(z.)), and L.» denote
the line connecting (z., f(z.)) and (xs, f(zs)). Since f(z;) > f(x,) = f(zs) Lo has positive slope,
and L., has negative slope. Since f(x)is convex N, it lies on or above £, for al x € (z4,2:) and on
or above L. for al x € (z.,zs); consequently

F(za) < f(z) for all z € (x4, z.)

and
f(zp) < f(z) for all z € (zc,zp)

Thus
f(zo) = fzp) < f(z) for al z € (zq,p)

which implies, since f(n)is just f(x)sampled at the points %, that

f(na) = f(np) < f(n) foral n € {na+1,,. .n—1}

In all cases, either
e f(n) attains its minimum at one of the endpoints, either n, or n, or
e f(n)isconstant for n € {n,,...np}.

a
The next lemma, due to Breiman et al. (Breiman et al., 1984), shows that splitting a node can never increase
the average impurity:

Lemma4.10 Forn=1,...N -1,
f(0) = f(N) = f(n)

Proof: Replace “>” with “>” in the proof of Lemma4.4.
We next show that f(n)is non-increasing over the first uniform sequence:

Lemma 4.11 Let n, be the right boundary point of the first uniform sequence. Then forn=1,...n;
Af(n) = f(n) - f(n-1) <0

Proof: Use Lemma4.10 to conclude that f(1) < f(0),then replace “>" with “>” in the remainder o the
proof of Lemma4.5. ]
We next show that f(n)is non-decreasing over the last uniform sequence:

Lemma4.12 Let n, be the left boundary point of the last uniform sequence. Then forn=n,+1,...N
Af(n) = f(n) - f(n-1) 20

Proof: Use Lemma4.10 to conclude that f(N) > f(N — 1), then replace “>" with “>” in the remainder
of the proof of Lemma4.6. O
The next lemma connects the global behavior of f(n) to itslocal behavior over uniform sequences:
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Lemma 4.13 The set of global minimazers of the splitting rule f(n) includes at least one boundary poaint,
but may also include all interior and boundary points of one or more uniform seguences.

Proof: Assume that the set of global minimizers includes only interior points. Let ng be one such point.
We have three cases to consider:

Cas= 1 If ng iswithin the first uniform sequence, then by Lemma4.11 f(n)must be constant over
this sequence; it follows that all interior points and the right boundary point of this sequence belong
to the set of global minimizers.

Cas= 2 If ng iswithin the last uniform sequence, then by Lemma4.12 f(n) must be constant over
this sequence; it follows that all interior points and the left boundary point of this sequence belong to
the set of global minimizers.

Case 3 If ng is within a uniform sequence other than the first or last, then by Lemma 4.9 f(n)
must be constant over this sequence; it follows that all interior points and both boundary points of
this sequence belong to the set of global minimizers.

Since ng was an arbitrary element of the set of global minimizers, it follows that this set contains at least
one boundary point, and may contain the interior and boundary points of one or more uniform sequences. O
This completesthe proof of Theorem 4.2.

4.4 A Calculus Proof of the Minima-Free Property

Above we showed that the minima-free property follows from the convexity of the splitting rule f(x),which
in turn follows from the convexity of the impurity measure 1 via Lemma 4.1. These results were obtained
using primarily geometric arguments. In this section we show that similar results can be obtained using
calculus; in particular, we have

Theorem 4.3 If the Hessian V2T of the impurity measure | (py,...,p) is negative definite on

m
Q:{(pl,...,p,): 0<p;<1foralli and Zp,-:l}

=1
then the splitting rule f(x)is strictly convex N

Theorem 4.4 If the Hessian V21 of the impurity measure | (p1,...,px) is negative semidefinite on

( m
i(m,...,pm) :0<pi<1foralli, and 3 pi=1

i=1
then the splitting rule f(x)is convex N.

In order to apply the above theorems, we cannot just test the matrix of second derivatives defined by

821 %I . 8%
dp19p1 3p10p2 Op10pm
81 % . 821
2 0p20p1 Op20p2 0p20pm
Vi(p1,...pm) = . . .
a2 821 . 8*r
3pmdp1  OpmOp2 OpmOPm
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for negative definiteness or semidefiniteness, as this fails to take account of the fact. that py,...,p, are
related by

m

> pi=1

i=1

Instead we must first substitute the above constraint for, say, p., to get afunction of the m — 1 independent
variables py,...,pm-1 Which we designate as | :

m-—1
I(pr,-..pm-1) =1 (ph..-,pm-l,l— Zpi)
i=1

It follows by construction that
e V2] is negative definite on
m—1
Q= {(P1,-~~Pm—1) ;0<p;<Ifordli,and Y pi < 1}
i=1
if and only if V27 is negative definite on R.
o V2[is negative semidefinite on Q if and only if V27 is negative semidefinite on 2.

Thusthe problem of determining whether V21 is negative definite on €2 reduces to the problem of determining
whether

P P . 021
9p10p, 9p10p2 9p10pm—1
%l a1 . 821
27 _ Op20p1 O9p208p2 8p20pm—1
v ](pl, --pm—l)— . . . .
oI a2 L a*r
Opm-10p1  Opm-10p2 Pm-10Pm-1

is negative definite on €.

Proofs of these theorems are given more for completeness than because they add anything to the presen-
tation, and can be skipped without any loss of continuity. In fact, Theorems 4.3 and 4.4 are much weaker
than their geometric counterparts, as:

o they require the impurity measure to have continuous first and second partial derivatives, and
e they follow directly from Lemmas 4.1 and 4.8, in view of Facts 3 and 4.

We prove Theorems 4.3 and 4.4 below.

Proof of Theorem 4.3: We show that f”(z) < 0 on (x,, z5); Fact 3 then implies that f(z) is strictly
convex N. In order to differentiate f(x), we must know how to differentiate a function taking a vector
argument. To review how this is done, we will compute the first two derivatives of the simpler function

w(z) = I(F(z)) = I(r1(z),r2(2), ... rm(2))



27

which are

, d

w'(z) = Ef(rl(x) re(z) rm())
_ R 0I(ri(2), (), ... rm(x)) O
B ; Ir; 9
S 9I(F(x)) Ory
N ; 67‘,’ B_x
[ e | onotan) fon, o
- or Ors T O Oz Ox

()]

=1 \Jj=1
_ o~ 62](7‘(.@)) ’ ’ - a](F(x)) 1"
- ;; 87']'67'1' T'j(l‘) z( )+§ a“ L
= (2)TVi(F(z))7' (z) + VI(F(z)) - 7' ()

by the chain rule

3rm
© Oz

where V2] (7(z)) isthe Hesssian matrix of theimpurity measure | evaluated at the point #(x). Thiscompletes

the review. We now compute the first, and second derivatives of

f(x)=zI(€(x)) T (1- x)(7(x))

which are

flz) = I(f?(ag))ﬂw(“(z)).f”'(x)— j(F(x))+(1 - z)VI(F(z )1 '(x)

fr(x) = VIE=) . O(x)FVIEz) (@)t el (@) TV (E2)l (z) T2V
- VI(#(2)) .7 (x) - VI(#(2)) .7 (z)  (1- 2)7(x)T VEI(7(2))7
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— -

= VI({{2) - (20 (2) + 20"(2)) + 28 (&) VI (E(2)) " (2)
+ VI((2)) - (=27 (z) + (1 = 2)7"(2)) + (1 - 2)7 (2)T V2 I(7(2)) 7' (2)
We now show that two terms in the above expression are zero by showing that

20" (z) + z0"(2) =0

and
—27(z)+ (1- 2)f"(z) =0
Clam1 (30) holds.
For: #k
L;
b= Nz
L.
6 = =
! Nz?
L:
Y /A— _r
! 2N:n3
L; L;
’ "o _ ?
= 2[1 + l'ei = 2 ( N.I:Q) +x <2N133)
= 0

and for i =k

6 = 1- Tmin

X
E;; — X;r;in
Xmin
KZ = =2 -3
y "o Lmin __gTmin
= 2£k+z£k = 2(z2)+$(2z3)
= 0

Thus each component of 2¢"(z) + z€”(z) is zero, as claimed.

Clam 2 (31) holds.

Fori #k

T NI-2)

rl = R

TN -2)?
R:

7. 1

= 2N(l—.7:)3

J _ "o _____]?_1______ _ _Ri
= i+ (1 —z)rf = 2(N(1—z)2 +(1-12) 2N(1-—;r)3

)
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and for i =k

a::'_l

by = Emer=l,
11—z

» = Zmar — 1

O gy e
x —1

1 — 2 maxr

. (1-2)?

’ _ xmar—1 ’ l‘ma,,-—l
= 0

Thus each component of —27/(z) + (1— z)#"(z) is zero, as claimed.
In view of (30)and (31}, two termsdrop out of (29), leaving
f(z) = 20 (2)"V?I(E(2)) () + (1 - 2) (2) "V 1(7(2))7 ()
The following observations are sufficient to ensure that f”(z) < 0 on (z,, zs):

er>0and1l1—2z>0.

e At least one of £’(z), #(z) is not equal to the zero vector. For if #/(z) = 7'(z) = 0, then

2)=0 = f)=-N2=0 forifk
= L;=0 forifk
= all samples left of x are class k
. R;
—/ —_ Vi _ 1 . .
(z)=0 = r"(z)_—N(I—x)z_O forifk
= R;=0 forifk

= al samplesright of x are class k
so that all samples in the sequence are class k, and we would not be splitting it in the first place.

e The Hessian V21 is negative definite on 2, which implies that

y V@) <0 for al §#0and F€Q

Since f”(z) < 0, f(x) isstrictly convex N by Fact 3. O
Proof of Theorem 4.4: Exactly asin the proof of Theorem 4.3, we obtain

—

f”(l') = JIZI(i)TVZ](f(x))['(I) +(1—- f)Fl(x)TV2](F(x))F/(x)

but the negative semidefiniteness of the impurity measure allows us to conclude only that f”(z) < 0, and
therefore that f (x) is convex N by Fact 4. O
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4.5 Rational Splitting Rules and the Minima-Free Property

Some splitting rules, notably the information gain ratio (Quinlan, 1990), do not fit into the framework
developed thus far; we must therefore develop additional tools to analyze these cases. In particular, we
consider splitting rules of the form
g9(z)
F(z) = *—=
(=) h(@)
and we seek conditions on g(z) and h(z) which ensure that F(z) attains its minimum at a boundary point.
The main result of this section is:

Theorem 4.5 Consider the splitting rule

If g(z) and h(z) are twice differentiable and satisfy the following:

g"(z) <0 over uniform sequences.

g(z) < 0 for x € (0,1).
h'(z) <0 for x € (0,1).
e h(z) >0 for x € (0,1).
For G(z) = g'h — h'g,

G(0) = lim G(z) = lim ¢h—hg <90

z—+0+ r—0+
and
G(l) = lirn G(z)= lirn g¢h-h'g>0
r—=1- r—1-

then F(z) attains its minimum at a boundary point.

Proof: Fix a uniform sequence extending from x, to z,. We must show that F(z) attains its minimum at
either x, or z,. We have immediately that for = € (24, zs):

* g"(z) <0.
e g(z) <0.
o h'(z) <0.
e h(z)> 0.

from which it follows that ¢"’h — h”g <0 for al X € (z4, ) and thus by Lemma4.14 that F(z) attains its
minimum at either x, or z. Since this holds for any uniform sequence, F(z) must attain its minimum over
[0,1] at a boundary point.

Note however that this result does not rule out the possibility of F(z) attaining it;; minimum at x = 0
or X = 1 (or equivalently, of F(n) attaining its minimum at n = 0 or n = N). We want to rule out this
possibility. because if F(n) attainsits minimum at n = 0, say, then since we are only evaluating F(n) at the
pointsn=1,2,...,N — 1, it may be that the minimum of F(n) over thisset occurs at n = 1, which may
not be a boundary point. To exclude this possibility, we note that
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e F(z) cannot attain its minimumat x = 0 because by Lemma4.15, F(z) isstrictly decreasing over the
first uniform sequence.

e F(z) cannot attainits minimumat x = 1 because by Lemma 4.16, F(z) is strictly increasing over the
last uniform sequence.

Thus we have shown that F(z) attainsits minimumover [0,1] at a boundary point, and furthermore that
this pointisnot x =0 or x = 1. a
We prove Lemmas 4.14, 4.15 and 4.16 below:

Lemma 4.14 Consider o function of the form

g9(z)
F =
(z) h(z)
Ifh# 0 and g”h — gh” < 0 over on interval (z,,zs), then F' attains its minimum on [x,, z;] at either z, or
Xy
Proof: We show that ¢”h — gh™ <0 for all x € (x4, zs) implies that F”(z*) < 0 for any critical point x*

in theinterval (z,,zs), that is, for any point x* satisfying F’(z*) = 0. This effectively forces all extrema of
F(z) in thisinterval to he maxima. The first and second derivativesof F are:

’ glh_ghI
Flo= S

F’ = (g”h +4dh —gh— g};';;) h2 (g’h—— gh') 2hh'

_ (¢”h—gh™)h? — (g'h — gh") 2hK’
h4

Now, for any critical point x*, F’ (x* )= 0, which implies that g'h — gh' = 0. Hence at the critical point,
(g”h ~ gh”) h* ~ (g'h — gh’) 2hh’

FII (z*) - h4
- (_g"_h—hgh")_lﬁ sincegh — gh = 0 (32)
" * h * — - hv// -
_ S~ o) -
< 0 since X* € (z,, ) (34)

Thus F” (2*) < 0 for any critical point X* € (z,, z), which impliesthat F(z) has no minimain thisinterval.
It followsthat F' either increases, decreases, or increases and then decreases on [z,, z3]; in all cases F attains
its minimum over [z,, zp] at either z, or zy. O

Lemma 4.15 Assume the first uniform sequence lies between 0 and z,. Let F(z), G(z) be as above. If
h#0 and ¢”h — gh" <0 for x € (0,zs), and if
H I AN
G(0) = lim G(z) = lim ¢'h—h'g <0

then F(z) is strictly decreasing over the first uniform sequence
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Proof: For any x € (0, xp),

G’(l’) — g”h —glhl+glhl _gh//
— g”h _gh”
< 0

by assumption. Since G*(x)< 0 for x € (0, zs) and G(0) < 0, it followsthat G(x) <0 for x € (0,z). Thus
for x € (0, zp)

gh — g
h2
G(z)
h2
< 0

Fi(x) =

so that F'(z) isstrictly decreasing over the first uniform sequence. O

Lemma4.16 Assume the last uniform sequence lies between x, and 1. Let F(z), G(x) be as above. If
h#0and g”h — gh" <0 for x € (z,,1), and #f

G(1)= lim G(z)= lim g’h—h'g >0

31— z—31-
then F'(z) is strictly increasing over the last uniform sequence.

Proof: For any z € (24, 1),

Gl(l') — gllh_glhl +glhl_ghll
gllh _gh”
< 0

by assumption. Since G'(z) < 0 for X € (24, 1) and G (1)> 0, it follows that G(x) > 0 for € (¢4, 1). Thus
for x € (x,, 1)

! !
g'h —gh
G(z)
= =5
> 0
so that F(z) isstrictly increasing over the last uniform sequence. O

This completes the proof of Theorem 4.5.

4.6 Repeated Values

In this section, we show that the above results, which were obtained assuming no repeated values, carry over
to the case in which repeated values are alowed. We distinguish two types of repeated value:
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Definition 7 A uniform repeated value (URV) is an attribute value to which more than one instance is
mapped, and all such instances belong to the same class.

Definition 8 A non-uniform repeated value (NRV) is an attribute value to which more than one instance
is mapped, and at least two such instances belong to different classes.

The definition of a boundary point given in Section 3 is not general enuf to handle repeated values, so we
use the definition given in (Fayyad & Irani, 1992b):

Definition 9 A point c is a boundary point if there exists instances s;, s» such that:
e s; and s, belong to different classes,
e c lies between the projected valves of s; and sa, z.e. A(s1) < ¢ < A(sz), and

¢ No sample s maps to a valve between A(s;} and A(sz2), that is, for all instances s
A(s5) & (A(s1), A(s2))

With this definition of a boundary point, al of the results obtained up to this point hold even when repeated
values are allowed:

Theorem 4.6 Let f be a splitting rule which, when applied to sequences with no repeated values, has the
following properties:

1. Over any uniform sequence, it attains its minimum at a boundary point of that sequence.
2. Itis strictly decreasing over the first uniform sequence.
3. Itis strictly increasing over the last uniform sequence.

Then f has the same properties over sequences with repeated values.

Proof: Fix asequence S of training data, possibly containing URVs and NRVSs; then we must show that
the splitting rule f has properties 1-3 over S. These properties relate to the behavior of f over uniform
sequences, so we pick a particular uniform sequence U from S, possibly containing URVs, and investigate
the behavior of f over U.

Let S’ be the sequence produced by "unstacking" the URVs in S, meaning that tine instances mapped
to a given URV are remapped to distinct values in the interval (URV — ¢, URV * ¢), where ¢ is chosen small
enuf that no other instances map to thisinterval. Then .S’ consists of uniform sequences, possibly separated
by zero or more NRVs. One such uniform sequence, call it U’, corresponds to U with all URVs unstacked.

Let S” be the sequence produced by unstacking the NRVs in S’; clearly this does not affect U’, which
contains no NRVs (because it was obtained from a uniform sequence in S). Now, S' is a sequence with
no repeated values, and U’ is a uniform sequence from S, so by the assumptions of the theorem we can
conclude that:

e f attains its minimum at a boundary point of U/’
e If U’ isthe first uniform sequence, then f is strictly decreasing over U’

e If U’ isthe last uniform sequence, then f isstrictly increasing over U’
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The splitting rules f we consider have the property that the behavior of f over a uniform sequence is
unaffected by how the samples are arranged outside that sequence, so long as the number of samples of each
class to the left and right of that sequence stays the same. This implies that the behavior of f over U’
when U is regarded as a subsequence of S’ is exactly the same as its behavior when U’ is regarded as a
subsequence of S5”. It follows that the above properties also apply to the behavior of f over U/ when U’ is
regarded as a subsequence of S'.

Next, we plot how f variesover U’ and aso how f varies over U (these plots are called splitting curves).
The relation between these curves is that the splitting curve of f over U isjust the splitting curve of f over
U’ with some sections taken out (those corresponding to unstacked URVs). We observe that:

e In view of the fact that U and U’ have the same boundary points, that f attains its minimum over
U’ at a boundary point implies that f will attain its minimum over U at a boundary point (because
throwing away certain sections over which f does not attain its minimum does not affect the location
of the minimum).

e Thefact that f isstrictly decreasing on U’ when U’ isthe first uniform sequence impliesthat f will be
strictly decreasing on I when U is the first uniform sequence (because throwing away certain sections
of a curve does not affect its monotonicity properties).

e Thefact that f isstrictly increasing on U’ when U’ is the last uniform sequence impliesthat f will be
strictly increasing on U when U is the last uniform sequence (because throwing away certain sections
of a curve does not affect its monotonicity properties).

The theorem follows. (|

Corollary 4.7 For the case in which repeated values are allowed, the set of global minima of a splitting rule
f satisfying the conditions of Theorem 4.6 includes only boundary points.

Proof: Assume not. Then a global minimum occurs at an interior point no of a uniform sequence. This
uniform sequence cannot be the first or last, as Theorem 4.6 shows that f isstrictly decreasing over the first
uniform sequence and strictly increasing over the last. For any other uniform sequence, Theorem 4.6 shows
that f issmaller at one of the boundary points n, of this sequence than at any interior point, so

f(no) > fne)

and ng is not a global minimum, which is a contradiction. The result follows. O

Corollary 4.8 For the case in which repeated values are allowed, splitting rules of the form
f(x; D)= 2I(l{2)) T (1- 2)I(7(z))
where | is strictly convex N cut only at boundary points.

Proof: Thisfollowsfrom Corollary 4.7, since splitting rules of thisform satisfy the conditions of Theorem
4.6 by Lemmas 4.2, 4.5 and 4.6. O
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Corollary 4.9 For the case in which repeated values are allowed, splitting rules of the form

Fz) = 9(z)

 h(2)
where g and h satisfy the conditions of Theorem 4.5 cut only at boundary points.

Proof: Thisfollowsfrom Corollary 4.7, since splitting rules of this form satisfy the conditions of Theorem

4.6 by Lemmas 4.14, 4.15 and 4.16. a
Similar arguments can be used to show that all of the results obtained previously assuming no repeated
values carry over to the case in which repeated values are allowed.

5 Applications

We now apply the theory developed above to the Entropy, Gini, and Inaccuracy impurity measures, as wel as
to the purity gain and purity gain ratio, which respectively generalize the information gain and information
gain ratio to impurity measures other than Entropy.

5.1 Entropy
It is well-known that the Entropy impurity measure

m

Ent (p1,...pm) = Y —pilog(pi) (35)

=1

isstrictly convex N (see, for example (Cover & Thomas, 1991));it follows that the splitting rule f(n : Ent)
inherits all of the properties discussed in Section 4, including the minima-free property. We thus obtain, via
asdlightly different approach (Theorem 4.1), Fayyad and Irani's result (Fayyad & Irani, 1992b) that Entropy
always cuts at boundary points. For completeness, we include a proof that the Entropy impurity measure is
strictly convex n:

Theorem 5.1 The Entropy impurity measure (35) is strictly convex N, that is, for g, € 2, A € (0,1)
Ent(AF + (1 — A)q) > AEnt(p) + (1 — A)Ent(§)
Proof: Recall that p and ¢ are purity vectors, i.e.

p=(p1,---Pm)

Fix 7, ¢, and A, and let
w(y) = —ylog(y)

Claim 1 For each i, w(Api + (1= A)gi) > dw(p:)  (1- Mw(g:), with equality if and only if p; = g;.
If p; = q:, it isclear that equality holds. Thus assume p; # ¢;. We have three cases to consider:
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Casel ppi>0,¢:=0
We have
w(Api + (1 = A)g;) = w(hpi)
—Ap; log(Ap;)
= —Apilog(A) — Api log(p;)
~Ap; log(pi)
= Auw(pi)
Aw(pi) + (1 — Nw(q:)

\%

and the claim holds.

Case2 p;i=0,¢;:>0
We have

wApi +(1-A)g) = w((1-2A)g)
1 = A)gilog((1 — A)gi)
1= X)gilog((1 = A)) — (1 — A)gs log(g:)
1 — X)g; log(q:)
= (1-MNw(g)
Aw(pi) + (1 = Mw(qs)

(
(
(
(

and the claim holds.

Case3 p,>0,q,>0
Thefirst and second derivatives of w(y) = —ylog(y) are:

w'(y) = —log(y)—1
1

w'(y) = —5

< 0 fory >0
Thus w(y) isstrictly convex N for y > 0 by Fact 3, and since p; # ¢; and A € (0, 1), it follows that
w(Api + (1= A)gi) > Aw(pi) + (1 — Aw(gi)
as required. This completes the proof of Claim 1

Thus for each i, we have
w(Api + (1 = N)gi) > dw(pi) + (1- Nw(g:)
and, since ¢ # ¢, for at least one i we have

w(Api + (1 — Ngi) > Aw(pi) + (1 — Nw(q).
It follows by summing over ¢ that
2w+ (L= Ngi) > - dw(pi) + 3 (1= Nw(e)

i=1 i=1 i=1




or

S w4 (1= Ng) > A3 w(p) +(1- 0D w(e)
i=1

i=1 i=1
or equivalently
Ent(AF+ (1 — A)q) > AEnt(p) + (1 — A)Ent(q)
as required. m|

5.2 Gini

The Gini impurity measure

I(p,....,pm)=1=Y_p}

has been shown to be strictly convex N (Breiman et al., 1984). Here we extend this result:

Theorem 5.2 For a > 1, the impurity measure
I(p1,....pm)=1-) pf

is strictly convex n.

Proof: Let A€ (0,1), and

m
7§ € Q={(p1,.--,pm): 0< p; <1foralli and Zp,-:l}

i=1
where 7 # ¢. Then we must show that
IDF+ (1 =X)9 > AP+ (1 =N (36)
but before doing so we prove afew claims.

Claim 1  xy@+ (1- ) - (Xy+ (1= A))* > 0, with equality if and only if y = 1, where y > 0,
0<A<l, and a>1.

Let
w(y) =2y F(1-2) - (xyt (1- 1)°
Then
Wy) = Aey*l-a(yt(1-1)7TA
.t 2 a-—1
= Jday (1—(/\+ ” ) )
wl(y)
= Aoy lwi(y)
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a-—1
where wy(y)=1- (At ‘;—*) . Furthermore,

W) = —(a—1) (H %) (_1 - A)

y2

- (a-na-»A (HQ)H

Y y
> 0 sincea>1,0<A< 1,y>0

so that w,(y) isstrictly increasing for y > 0. Since

a—1
wi(l) = 1- <x\+ —11—/\>
= 0
and w; (y) isstrictly increasing, it followsthat
<0 forO<y<l1
wi(y)s =0 fory=1
>0 fory>1

and thus that
<0 for0<y<]1

w'(y) = Aay®rui(y) ¢ =0 fory=1
>0 fory>1

so that w(y) isstrictly decreasing for y < 1 and strictly increasing for y > 1. Since

w(l) = AT+ (1 -2 = (A1) +(1-1)°
= 0

>0 for0<y<1
w(y)s =0 fory=1

>0 fory>1

this implies that

which proves the claim.

Claim 2 £, oach i, Ape + (1- A)g% — (Aps T (1= N)g:)® > 0, with equality if and only i p; = g;,
when: 0 < A<landa>1.
We have four cases:

ca%l pi—_—qui:0~
In this case

AT (1 - N)gf — (At (1= N)g)* =0
so that equality holds for p; = ¢; = 0




Case2 p;=0,¢; >0

In this case
Apf + (1= Mgl = Opi + (1= A)g:)® = (1=Xg¢f —((1-Ng)"
= (1=XNg (1-(1-1*1
> 0 since 0 < A<l a>1
so that the inequality is strict for ¢; # p; =0.
Case3 p;>0,¢9;=0.
In this case
Apf + (1= Mg = (Opi + (1= Ng:)* = Apf — (Api)*
= Ap} (l — /\0‘_1)
> 0 since 0 <A< 1, a>]

so that the inequality is strict for p; # ¢; = 0.

Cased p;>0,¢;>0
Let

Then

<G3) v ((2)+0-9))
= g xyr T (1-A) = (xyt (1-A)9)

>0 for y# 1 (i.e. pi #¢i) by Claim 1
=0 for y=1(i.e. pj =¢;) by Claim 1

Apf + (1= g = (Api + (1= M)

so that if p; = ¢; equality holds, and if p; # ¢; the inequality isstrict.
This proves the claim.

Claim 3 "7 (Apf+ (1-A)g? — Api T (1= A)g:)*) >0, where 0< A< 1and a> 1.

Each term in the sum is > 0, by Claim 2. If al terms were zero, then we would have p; = ¢; for al
t, or §= ¢, in violation of the assumption that 7 # ¢. Thus the sum is strictly > 0, which proves the
claim.

We now have the necessary tools to prove (36):

I(Ap+ (1= 2)9) = AI(p) - (1 = N I(])

1= (i + )a—/\(l—Zp?)—(l—,\) (1—21,;.1)

i=1

= Y e+ g — (Api + (1 - N)g)*)
i=1
> 0 by Claim 3

It followsthat | isstrictly convex N. a
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5.3 Inaccuracy

Inaccuracy is in some sense the natural impurity measure to use, since what we realy want to do is to
maximize the accuracy of the classification over the test data. However, thisignores the lact that decision tree
construction isamulti-step process, and it isnot clear that choosing the split to minimize an Inaccuracy-based
splitting rule at each step will yield a tree that performswell on the test data. In fact, experimental evidence
suggests that the Inaccuracy impurity measure yields larger trees (Brodley, 1995) and lower predictive
accuracy (Pazzani, Merz, Murphy, Ali, Hume, & Brunk, 1994) than the Entropy impurity measure. Such
problems led to the abandonment of Inaccuracy in favor of measures such as Entropy and Gini (Brodley,
1995; Lubinsky, 1995).

The problems with Inaccuracy can be traced to the fact that it is not strictly convex N, but only convex
N, as shown below:

Theorem 5.3 The Inaccvracy impvrzty measure
I(pr,- - ,pm) = l-mi_ax P

is convex N, but not strictly so.

Proof: For A € [0, 1] and

m

P, § € Q={(p1,---,pm): 0<p; <1foralli and Zp,-:l}

i=1
we must show that
IAp+ (1 -A)) > M(p) + (1 - N)I(q)
Consider
I(Ap+ (1= A)q) — (AM(P) + (1 = A I(T))
= 1-max (Api + (1 = X)gi) - (/\(1 —max p;) + (1 — A)(1 — max ‘h’))
H 1 J
= 1-A—(1-A)+Amax p; + (1 - A)max ¢; — max (Ap; + (1 — A)gs)
i J 1
= Amax p; + (1 — A)max ¢; — max (Ap; + (1 — A)gi)
i 3 i
> 0

The > holds because one can vary the indices i in p; and j in ¢; independently to achieve a potentially
higher maximum value of
Xmax pi+ (1—A) max g;

than would be possible if they were required to be the same, asin
max (Api + (1= A)gi)

Thus
IOp+ (1N > M)+ - NI
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so that | isconvex N, but not strictly so, since equality holds when the intersection of the set of indices that
maximize p; with those that maximize ¢; is non-empty. O
That Inaccuracy isonly convex N admits, by Theorem 4.2, the possibility that f (z; Inacc) attainsits minimum
in aflat valley that is constant over a uniform sequence.® Indeed, it was recognized as long ago as 1984
that there exist non-trivial sequences for which the the Inaccuracy-based splitting rule is constant over the
entire sequence (Breiman et al., 1984). Such sequences are not at all atypical; they have the property that
for every cut point ¢, the same class isin the majority on either side of ¢ (an example is shown in Figure
8). To see why this causes problems, if an attribute A isselected for which the splitting curve is constant,
the algorithm will most likely split off the first or last instance along A, so that one of the newly created
nodes contains only a single instance. If this occurs repeatedly, it could explain the large tree sizes and poor
generalization performance of the Inaccuracy impurity measure.

It appears that Inaccuracy can be fixed, however. The key observation was made by Lubinsky (Lubinsky,
1995), who noted that the splitting rule

Inacc.Gini = f (n;Inacc) + ';}—f(n; Gini) (37)

breaks ties in Inaccuracy using Gini, by virtue of the following facts:

e f(n;Inacc) changes in increments of at most 4, as it is the fraction of samples that are wrongly
classified.

e 0< f(n;Gini) < 1.
Lubinsky reported that the Inacc.Gini splitting rule produced significantly smaller trees than Gini, with

comparable error rates on al data sets but one (Lubinsky, 1995). The relevance of this to the present work
is that the Inacc.Gini splitting rule (37) has the minima-free property:

Theorem 5.4 Let | ke a strictly convex N impurity measure, and define the impurity measure
I
Inacc./(p) = Inace(p) T 1 1)
N M
where
M =1+ maxI(p)
peEN

Then the splitting rule f (n; Inacc.l) only cuts at boundary points.
Proof: We show that the impurity measure Inacc.lis strictly convex N. It then follows by Theorem 4.1
that f (n.;Inacc.T} only cuts at boundary points. For A € (0,1) and

m
7, T€Q={(pr,....pm): 0<p; <1foraliand Y pi=1}
i=1
we must show that
Inacc.I(Ap + (1 — A)§) > A Inacc.I(5) + (1- A) Inacc.1(§)

8Elomaa and Rousu (Elomaa & Rousu, 1996) have shown that f (z;Inacc) is "well-behaved", meaning that its value at one
of the boundary points of a uniform sequence is at least as small as that at any interior point.




We have

SO+ (1 A8
= Inacc(ApF+ (1 —A)q) + ﬁf(/\ﬁ‘l' (1-X)9)

InaccI(AF+ (1-A)$ = (Inacct

> X Inacc(p) + (1 — A) Inace(q) + N ! (Al(ﬁ) + (1= X))

= A(Inacc+ if)(*ﬁ (1- A)(Inacc+ M 1)(q)
= Alnacc.I(p) + (1— A) Inacc.I(§)

as required

Corollary 5.5 The Inacc. Gini splitting rule (37) has the minima-free property.

Proof: First note that

Inace.Gini = f (n:Inacc) + lf(n;eini)
= mnace(f{n)) + (1 M)inace(#(n) ¥ < (R Gini(f(n)) + (1~ 1)Gini(7(n)))
- %(IHacc(*(n)) WGml ) 1—— (Inacc( (n)]+%(iini(f‘(n)))
= % (Inacc+ ;Glnl) (Z(n)) + (1 — ]-V-) (Inacc+ Gml) (7(n))

f (n;Inacc + %Gini)

Theorem 5.4 and the convexity of the Gini impurity measure (Theorem 5.2) then imply that Inacc.Gini has
the minima-free property. O

That Inacc.Gini has the minima-free property may explain why it produces smaller trees than either
Inaccuracy or Gini alone. Inacc.Gini generally splits where Inaccuracy does, and thus produces more balanced
splitsthan Gini, which has a preference for splitting near the ends of the sequence (Breiman, 1996; L ubinsky,
1995); it follows that Inacc.Gini generally produces smaller trees than Gini. Moreover, the problem of
Inaccuracy producing large trees as a result of being constant over the entire sequence does not occur
for Inacc.Gini, which has the minima-free property; it follows that Inacc.Gini produces smaller trees than

Inaccuracy.

5.4 Purity Gain and Purity Gain Ratio

We now generalize the information gain and information gain ratio to impurity measures other than entropy
by introducing the purity gain, defined as

purity gain =f (0;1) — f (; 1) (38)
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f (x: Inacc)
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Figure 8: Sequence for which the splitting rule based on the Inaccuracy impurity measure is a constant
function of the cut point.
and the purity gain ratio, defined as

purity gain
—zlog(z) — (1- x)log(1 - x)

purity gain ratio = (39)
In this section we derive sufficient conditionsfor the purity gain and purity gain ratio to cut only at boundary

points, and show that the information gain and information gain ratio satisfy these conditions, thus showing
that they cut only at boundary points. We begin with the easy case, purity gain:

Theorem 5.6 For any strictly convex N impurity measure |, the purity gain (38) only cuts at boundary
points.

Proof: To discuss the purity gain, which is to be maximized, in the framework we have developed, which
deals with splitting rules that are to be minimized, we define the negative purity gain as the negative of the
purity gain, that is

negative purity gain = f(x;1) - f(0;1)

Now, since the negative purity gain differs from the average impurity f(x;l) by the constant f(0;1), the
negative purity gain inherits all of the properties of the average impurity f(z;1), and in particular the
minima-free property (Theorem 4.1). It followsthat the negative purity gain achieves its minimum at a
boundary point, or equivalently, that the purity gain achieves its maximum at a boundary point. ]

Corollary 5.7 The information gain (2) cuts only at boundary points.




Proof: Thisfollowsfrom Theorem 5.6 and the convexity of the Entropy impurity measure (Theorem 5.1). O

Theorem 5.8 Let | ke a strictly convex N impurity measure and let

9(z) = f(z1)-f(0;))
h(z) = —z log(z) — (1- x) log(1l — x)
G(z) = g'h-hg
Then f
G(0) = lim G(z) = lim ¢'h— g <0
and

G(l)= lim G(z) = lim g'h — kg >0

T—+1-

the purity gain ratio (39) only cuts at boundary points.

Proof: Todiscuss the purity gain ratio, which is to be maximized, in the frameworlc we have devel oped,
which deals with splitting rules that are to be minimized, we define the negative purity gain ratio as the
negative of the purity gain ratio, that is

f(z; 1) —£(0; 1)
—zlog(z) — (1- z)log(l — x)

9(z)
h(z)

negative purity gain ratio

With the goal of applying Theorem 4.5, we compute the first two derivatives of h to check that h* < O:

h/

log(1-x)t1-log(x)-1

log (1- x) — log(x)
" —_ _ ]' _1
W= -z =
_l‘-|—1—.’L’
z(l-2)
1

z(l—2)

So h”(z) isindeed < 0 for x € (0,1). Furthermore,

e g”(z) < 0 over uniform sequences, as
g"(x) = f"(=; 1)
and f”(z;1)is< 0 by Fact 4, in view of the convexity of f(z; 1) (Theorem 4.1).
e g(z) <O0for xe (0,1) by Lemma4.4.

e h(z) > 0 for z € (0,1).
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Thus we can apply Theorem 4.5 to conclude that the negative purity gain ratio

_9(@)
"=

attains its minimum at a boundary point, or equivalently, that the purity gain ratio achieves its maximum
at a boundary point. a

Corollary 5.9 The information gain ratio (4) alway cuts at a boundary point.

Proof: In view of Theorem 5.8 and the convexity of the Entropy impurity measure (Theorem 5.1), it
suffices to show that G(0) < 0 and G(I) > 0, where

f (z; Ent) — f(0; Ent)

h(z) = —zlog(z) — (1- z)log(l - z)

G(z) = gh-ky

o
&
~—

|

Claim 1 G(0) =
For a cut point x inside the first uniform sequence, assumed to consist of class k samples, the fraction
to the left of « that belong to class ¢ is:
[0 ik
til) = { 1 i=k

and the fraction to the right that belong toclassi is:

A £k
ri(z) = T
{ If\}J(l —z) i=k
_ s iFk
Tl sk
where N; and n; are respectively the number and fraction of class i samples in the entire sequence. It
follows that
g(z) = f(x;Ent) - f(0;Ent)

= zEnt ([(a:)) + (1 — z)Ent (# ( i n; log n,-)

i=1

= (1 —z)Ent (7 ( Zn, log n,) since Ent (_‘(l')) =0

. . _nk—a: Ng — X _ n; n; _ —_m ] i
= x)( l—a:log(l—fv> #Zkl—zlog(l—l')) (i:zln,logn,)

= _(nk_z)log( ) Zn,log( )+Zn,lognz

12k
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= —(ng — X)log(nk — x) + (ng — x)log(l = x) — Zn,- log n; + Zn,- log(1 - x) +Z n; logn;

itk ik i=I
= —(nk — X)log(nx — X) T (nx = X)log(1 - x) + Y _ nlog(1 — X) + nx log ny
itk
= nglogng — (ng — ) log(ng — z) + (nk —z+ Z"i) log(1l — z)
ik
= nglogny — (ng — 2)log(ng —z) + (1 — 2)log(l —2)

and furthermore

g’(.’L‘) = ]og(nk — X) +1- log(l - l‘) -1
= log(nk — x) — log(1 — x)
Thus
G(z) = g'h-gh
= (log(nk — x) — log(1 — z))(—z log(x) — (1- x)log(1 — X))
— (nk logng — (ng — X)log(nk — x) T (21— x)log(1 — 2))(log(1 - x) — log(z))
G(O) = lim G(z)
= 1_i)161+(nk logng — (nx — x)log(nk — x) + (1— x)log(1 — x))log(z) (=0.(—o00); indeterminate)
— lim log(z) (= oc/oo; indeterminate)
z—0+ (ng logng — (ng — X)log(nk — x) T (1 - x) log(1 — z))~1
. z7!
- x|—|>rcr)1+ —(nglogng — (nk — x)log(nx — X) T (1= x) log(1 — 2))~2(log(nx — x) — log(1 — X))
by I'Hopital’s rule
_ —(nklogng — (nk — z)log(nk — X) +(1-x) log(l —=))* _ ., . .
= rI_|’|?)1+ z(log(nx — x) — Tog(1 - 7)) (=0/0; indeterminate)
- lim —2(ny log ng — (ng — x) log(nk — x) + (1 - z)log(1 — z))(log(nx — z) — log(1 - z))
0 (log(nx — x) — log(1 - )) + & (=4 + %)
by I’'Hépital’s rule
= 0 sncel0<ny,<1
as required.

Clam2 G(l)=o.
For a cut point x inside the last uniform sequence, assumed to consist of class k samples, the fraction
to the left of x that belong to class ¢ is:

N, .
EAL 1 k
ti(z) = {%,x—Ngl—x) z'fk
Nz -
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o i#k
= ni— l—z l: k
T
and the fraction to the right that belong to class ¢ is:

= {0 ik

It follows that

g(z) = f(x;Ent) - f(0;Ent)

= zEnt (E‘(x))+(1—x)Ent ( Zn,logn;)

= :cEnt( ) ( Znon) since Ent (7(z)) = 0
ol (o) iy () - (S
- _(nk_(l_x))log(’““—f‘“”l)_Zn,log( )+ n;logn,

ifk i=lI

= —(nx—(1—2a))log(nk — (1 —x)) + (nkx — (1 — z)) logz — Z n; logn; + Zni logz + Zni log n;
ik itk i=1

= nklognk — (nk — (1- x))log(nk — (1= x))F (nk = (1= x))logx > n; logx
iZk

= nglogng — (nk — (1—2)) log(ng — (1 - x))+ (nk —(1-x)*t Zn,') logz
i #k
= nglogng — (ng — (1- z)) log(nx — (1- x))+ x logx

and furthermore

J'(z) = logx +1_ log(nk — (1-2)) — 1
= logx — log(ns — (1- X))
Thus
G(z) = gh - gk’
= (logx — log(nk — (1— z)))(—=zlog(z) — (1- x) log(1 — z))
— (ni log nk — (nk — (1- x))log(nk — (1~ x))+ xlog z)(log(1 — x) — log(z))
G() = lim G(x)

r—1-
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= lim —(nk logng — (nx — (1 = x))log(nk — (1 — z)) + zlog ) log(1 — )

r—1-
(= 0. (—oc); indeterminate)
. —log(1l — z) _ . :
- x|—|>r1n— (nx logng — (n — (1 — z)) log(ng — (1 — x)) T zlogz)~! (= oo/oo; indeterminate)

o (1-2)
= 2O ko — (me — (1= x))Tog(ns — (1- x)) F xlogz) 2(log # — log(ns — (1- )
by I’Hépital’s rule

—(ng logng — (nk — (1 — X)) log(nk — (1 — z)) + xlogz)?

= xiT_ (1 2)(logx — logins — (1-X))) (=0/0; indeterminate)
— i —2nelogni = (ne — (1 x))log(nk — (1~ X)) + xlog z) (log = — log(nk — (1 - Xx)))
z—1- —(logz —log(nk — (1 — z))) + (1 — x) (% - $(1_1—_x))

by I'Hopital’s rule
= 0 since0<n,<1

as required.

6 Conclusion

We have established that splitting rules f(n;1) based on strictly convex N impurity measures
e attain their minimum at a boundary point, and
e are strictly decreasing over the first uniform sequence and strictly increasing over the last.

We applied this theory to show that the Entropy and Gini impurity measures always cut at boundary points.
Splitting rules f(n;1) based on impurity measures that are only convex N were shown to have similar
properties, and this result was used to show that the Inaccuracy impurity measure either cuts at a boudary
point, or attainsits minimum in aflat valley that is constant over a uniform sequence.
We also developed tools for verifying the minima-free property for rational splitting rules, and used these
to show that the information gain ratio always cuts at boundary points.
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