

Solving multiple-instance and multiple-part learning problems with
decision trees and decision rules.

Application to the mutagenesis problem

Jean-Daniel Zucker, Yann Chevaleyre

LIP6-CNRS, University Paris VI
4, place Jussieu

F-75252 Paris Cedex 05, France
{Jean-Daniel.Zucker,Yann.Chevaleyre}@lip6.fr

Abstract
In recent work, Dietterich et al. (1997) have presented the
problem of supervised multiple-instance learning and how
to solve it by building axis-parallel rectangles. This problem
is encountered in contexts where an object may have
different possible alternative configurations, each of which
is described by a vector. This paper introduces the multiple-
part problem, which is more general than the multiple-
instance problem, and shows how it can be solved using the
multiple-instance algorithms. These two so-called
"multiple" problems could play a key role both in the
development of efficient algorithms for learning the
relations between the activity of a structured object and its
structural properties and in inductive logic programming.
This paper analyzes and tries to clarify multiple-problem
solving. It goes on to propose multiple-instance extensions
of classical learning algorithms to solve multiple-problems
by learning multiple-decision trees (ID3-M, C4.5-M) and
multiple-decision rules (AQ-M, CN2-M,Ripper-M). In
particular, it suggests a new multiple-instance entropy
function and a multiple-instance coverage function. Finally,
it successfully applies the multiple-part framework on the
well-known mutagenesis prediction problem.

Introduction

Supervised learning can be seen as the search for a
function h, a set of objects O towards a set of results R that
will be a good approximation of a function f for which the
result is only known for a certain number of objects of O,
the examples of f (Dietterich 1990). This problem consists
in inducing the description of h from a set of pairs
(description(objecti), resulti=f(objecti)) - the learning
examples - and criteria - learning bias - that enable a space
of functions of O towards R to be chosen and one function
to be preferred to another. The description of objecti is
often referred to as an instance of objecti.

Recent research has shown that this traditional framework
could be too limited for complex learning problems
(Zucker and Ganascia 1994; Dietterich, Lathrop et al.
1996; Long and Tan 1996; Zucker and Ganascia 1996;
Auer 1997). This is particularly the case when several
descriptions of the same object are associated with the
same result, baptized a multiple-instance problem (MIP)
by Dietterich et al. (Dietterich, Lathrop et al. 1996). Thus
the term multiple-instance characterizes the case where the
result f(objecti) is associated not with one instance but with
a set of instances {instancei,1, instancei,2, ... instancei,νi}, (cf.
Fig. 1).

Chemistry is a domain par excellence where these
multiple-instance problems are to be found. Dietterich et
al. present the task of classifying aromatic molecules
according to whether or not they are "musky" (Dietterich,
Lathrop et al. 1996). Several steric configurations of the
same molecule can be found in nature, each with very
different energy properties. In this way it is possible to
produce several descriptions of the different configurations
- instances - of this molecule. These descriptions
correspond to measurements obtained in each of the
different configurations (instances m17,1 and m17,2 of
molecule m17, cf. Fig. 2). To simplify, let us say that a
molecule is said to be musky if, in one of its

objecti h resulti = f(objecti)

Classical framework (mono-instance)

Multiple-instance framework

descriptions

description

h

instancei

instancei,1

instancei,2

instancei,νi

resulti = f(objecti)objecti

Figure 1 - Classical and multiple-instance frameworks

configurations, it binds itself to a particular receptor. The
problem of learning the concept "musky molecule" is one
of multiple-instance learning. Maron and Lozano-Pérez
consider other possible applications: one is to learn a
simple description of a person from a series of images that
are labeled positive if the person is somewhere in the
image and negative otherwise. The other is to deal with a
high amount of noise in a stock selection problem.

Dietterich et al. have proposed different variations of a
learning algorithm where the concepts are represented by
axis-parallel rectangles (APR). They observed that "a
particularly interesting issue is how to design multiple-
instance modifications for decision trees, neural networks
and other popular machine learning algorithms"
(Dietterich, Lathrop et al. 1996).
This paper will analyze the difficulties raised by multiple-
instance problems in general. It will show the link between
this problem and the multiple-part problem (MPP), in
which instances are not necessarily alternative descriptions
of the object but may be descriptions of different parts of
the object. "Multiple-extensions" will be proposed for
classical algorithms in order to handle MIP and MPP
problems by learning decision trees and rule-based
systems. The main reasons that motivate us for finding
such algorithms are that MMPs play a central role in
learning structure-activity relations. This is the problem
that was solved in the REMO learning system (Zucker and
Ganascia 1994; Zucker and Ganascia 1996), REPART
(Zucker, Ganascia et al. 1998) and STILL (Sebag and
Rouveirol 1997) Inductive Logic Programming systems.
Section 2 is a more formal presentation of the MIP
problem, shows how it is linked to the MPP problem and
explains how in the two cases problem solving comes
down to learning special concepts called multiple ones.
Section 3 proposes extensions to classical algorithms in
order to solve the multiple-problems and in particular
suggests an entropy function and a multiple-instance
coverage function. Section 4 presents the results of
predicting mutagenecity with the multiple-part framework.

Multiple-instance and multiple-part problems

Definition of multiple-instance problems

For the sake of clarity, let us consider the case where f is a
function with boolean values - a concept - the value of
which is known for a subset of O f(objecti)=TRUE (positive
example) or FALSE (negative example) - depending on
whether or not objecti belongs to the concept. We shall
note instancei,j the jth description of object objecti. We shall
call X the representation space for instances and co-
instances of instanceik, the other instances of the example
objecti, i.e. the set {instancei,j≠k}. Function h, which we are
trying to learn and must be a good approximation of f, is a
function which associates a boolean value with a subset of
the part of X, which can be noted by h: 2X

Æ {TRUE,
FALSE}. A learning example in the multiple-instance
framework of is represented in the following form:
({instancei,1 , ... , instancei,j, ..., instancei,νi}, f(objeti))
It should be added that the number νi can vary depending
on objecti and that the suffix j of 1 to νi given to instances
instancei,j is purely arbitrary. Note that in the limited
theoretical research that has been done on the PAC-
learnability of this problem, the number vi is equal to a
constant r (Long and Tan 1996; Auer 1997; Auer, Long et
al. 1997; Blum and Kalai 1997).
In the multiple-instance framework, Dietterich et al. (1997)
suggest that if the result of f is positive for an objecti it is
because at least one of its instancesij has produced this
result. If the result is negative it means that none of its
instances can produce a positive result. The researchers
support this hypothesis by the fact that in the domain of
molecular chemistry they are studying this is precisely the
case. Here, let us call this hypothesis the linearity
hypothesis. If we use the vocabulary introduced above, the
multiple-instance problem presented by Dietterich et al.
(1997) in their seminal paper can be defined as follows:

Definition 1 (MIP): The multiple-instance learning
problem consists in learning a concept from examples that
are represented by sets of instances that describe them, on
the linearity hypothesis.

Representation shifts for MIPs

The function h to be learned is more complex to learn than
a traditional concept since it takes its values from the set 2X
of the parts of X which has a cardinal that increases
exponentially with that of X. Today, no algorithm exists
that is capable of solving this problem directly. A possible
approach to too complex a problem would be to try to
change the representation in order to find a representation
where learning would be less complex (Subramanian 1989;
Cohen 1990; Giordana and Saitta 1990). Using the
linearity hypothesis, it is possible to introduce a boolean

A molecule

m17

One configuration
of m17

x1

x2
° m171 : (x1=3.1) & (x2=1.3

One instance: m171

x1

x2
°

m172 : (x1=2.5) & (x2=1.2)

Another instance : m172

Another configuration
of m17

Figure 2 -Two instances of the same molecule

concept inf which no longer applies to sets of instances but
instead to one single instance of these sets. An instance
belongs to this boolean concept if "the instance has
produced the result". This representation shift of a concept
defined on 2X by a concept defined on X can be said to be
isomorphic (Korf 1980) in that it changes the structure of
the problem but not the amount of information. The
concept thus defined will be called a "multiple-concept".
Following on from the linearity hypothesis, h is therefore
defined as a disjunction of the multiple-concept applied to
the different instances of an object:

f(objeti) = rvf(instancei,1) ∨ ∨ rvf(instancei,νi)

Concept rvf can be read as "responsible for the value of f".
The multiple-instance problem can be reformulated with
respect to this new function.

Property 1 : The problem of multiple-instance learning of
a concept f comes down to the mono-instance learning of a
concept rvf. The description of f is given as the logical OR
of the values of rvf on the different instances of an object.

Figure 3 gives Property 1 in graphic form. If defining MIP
is relatively easy, understanding and solving it are far less
simple. To illustrate the problem intuitively, let us consider
the problem we have decided to call the simple jailer
problem. Let there be a locked door and a set of N bunches
of keys containing a variable number of keys such that N+
of the bunches of keys are labeled "useful" and N- are
labeled "useless" (not useful). A bunch of keys is said to be
useful if at least one of its keys opens the door, otherwise it
is considered useless. The concept of usefulness could be
represented by two classes: that of useful bunches of keys
and that of useless bunches of keys. Learning the concept
useful bunch of keys is an MIP. Starting from a set of
positive and negative examples of f (here, useful and
useless bunches of keys), the concept rvf must be learned,
which characterizes the keys which open the door. This
problem is said to be "simple" as it presumes the linearity
hypothesis to hold, i.e. at least one key per useful bunch of
keys is sufficient to open the door.
Strictly speaking, the jailer problem doesn't correspond
exactly to the original MIP problem. In the original
definition, the instances are all representative of the same
object, of the same reality. Thus, in the case of chemical
molecules, each configuration is a possible state of the
molecule. What is important therefore is that in the MIP
problem, the configurations cannot appear simultaneously

since each of them characterizes the object taken as a
whole. In order to allow for this exclusive aspect between
the different co-instances in the jailer problem, we need to
say that a bunch of keys is in fact a "magic" (or quantum)
key ci which takes a shape from among νi shapes when
introduced into the keyhole and that it is useful if one of
the shapes it can take opens the door.
This variable character of the measurements of the same
object in the MIP problem means we can interpret MIP as
a classical mono-instance problem that has been made
ambiguous (Blum and Kalai 1997). The label of the object
is not associated with one single description of the object
(a magic key, a molecule) but with several descriptions
which are all of the same object but which represent
different states of the object (a key, a configuration), these
different states all being potential explanations of the
result. It is this type of ambiguity that must be allowed for
in MIP learning algorithms. It is also on this property that
the work on the PAC-learnability of MIP is based in order
to reduce it to known problems.

The multiple-part problem and how it is linked to
the multiple-instance problem

In work done before the development of MIP problems,
researchers have introduced a problem that was apparently
similar to the MIP and that was baptized a reformulated
problem (Zucker and Ganascia 1994) but which, for
reasons of clarity, we will henceforth be called the
multiple-part problem (MPP). Informally, the MPP
characterizes concept learning from the description of parts
of examples. MPP-solving lies at the heart of the REMO
system which enables the efficient learning of relations
from several thousand structured examples (Zucker and
Ganascia 1996). In order to build a disjunctive version
space, the STILL system solves an MPP problem
iteratively, in which it takes one positive example at a time
(Sebag and Rouveirol 1997). This system has obtained the
best results for the ILP problem of mutagenesis
(Srinivasan, Muggleton et al. 1997).
In MPP, as in MIP, each example is represented by a bag
of instances. In MIP, an instance is a snapshot of the entire
object, whereas in MPP, an instance is a small part of the
object. Let’s consider, for example, the application of MIP
and MPP to chemistry. Has shown before, in MIP, the bag
of instances related to a molecule would be measurements
on various configurations of this molecule. In MPP, we
would have to cut a molecule in small parts, each of which
would become an instance. Of course, these parts will have
to be homogenous. Putting the description of a single
atom, or even of a pair of bonded atoms in each instance
would both be valid MPP representations. In the first case,
the example would be represented by a bag of attribute-
value descriptions of each atom. In the second case, each
possible pair of bonded atoms of a molecule will become

descriptions

OR

instancei,1

instancei,2

instancei,νi

resulti = f(objecti)

rvf

rvf

rvf
objecti

Figure 3 - Multiple-instance learning of f and mono-
instance learning of rvf.

an instance of that molecule. We can see now that the jailer
problem mentioned above is more a MPP problem than a
MIP problem. In fact, the keys are seen as parts of the
same bunch and each of the instances describes one of the
keys.
As seen above, there can be many valid MPP
representation of the same data, depending on the size of
the chosen parts. The linearity hypothesis, stating that a
single instance can be used to identify the belonging of an
example to the studied concept, depends here on the
representation. For example, if we now that the presence of
a carbon linked to a nitrogen atom makes a molecule
highly active, it will then be impossible to predict such an
activity by examining atoms individually. Hence, the MPP
representation for which an instance corresponds to an
single atom won’t respect linearity hypothesis, whereas the
one for which an instance corresponds to a pair of bonded
atoms will.
 Choosing the appropriate representation in MPP, and
moreover, shifting between representations, is a crucial
problem, which is deeply studied in (Zucker and Ganascia
1996). We will ourselves here focus on the induction
aspects of the learning process in MIP and MPP, without
assuming the linearity hypothesis for MPP, because the
validity of the representation won’t be assured. The
multiple-part problem can be defined more formally as
follows:

Definition 2 (MPP): The multiple-part learning problem
consists in learning a concept from examples that are
represented by sets of instances that describe their parts,
without the linearity hypothesis.

Representation shift for MPP problems

Given the fact that the linearity hypothesis is not assumed,
one way wonder if it is still possible to introduce a function
as in the MIP which no longer applies to sets of instances
but instead to one single instance of these sets? The answer
is yes, all we need to do is to consider a new function inf
with the particular semantics "belongs to an object with the
result f". However, in the MPP it becomes possible, even
in the absence of noise, for two instances (two instances of
keys, for example) to be absolutely identical but to come
from objects from different classes (one from a useful
bunch of keys, the other from a useless one, for example).
Therefore the function inf must by definition take the value
"IMPERCEPTIBLE" on this type of instance, the
consequence being that inf is not a boolean function.
If we want to reduce the problem to one of concept
learning, and therefore to a boolean function, as in the case
of MIP, it is necessary either to group the values "FALSE"
and "IMPERCEPTIBLE" in one value "NOTTRUE", or to
group the values "TRUE" and "IMPERCEPTIBLE" in one
value "NOTFALSE". In this way it is possible to replace
learning the function inf by learning the two concepts oinf+
(only in f+) and oinf- (only in f-). In the jailer problem, they

correspond to the concepts of keys found in bunches of
keys which open (resp. do not) open the door and in no
bunch of keys which do not (resp. do). Alternatively, one
could also say that they "are only to be found among the
objects that satisfy (resp. do not satisfy) the concept f". If
the MPP problem is more general than the MIP one, it is
above all on the semantic level that this is true since, from
a computational point of view, the two cases require
learning multiple-concepts and then performing a logical
operation on the values of these multiple-concepts for the
different instances of an object.
Property 2: The problem of multiple-part learning of a
concept f comes down to the mono-instance learning of
two concepts oinf- and oinf+, where f is obtained as follows:
f(objeti) = [oinf+(instancei,1) ∨ ∨ oinf+(instancei,νi)] OP
¬[oinf-(instancei,1) ∨ ∨ oinf-(instancei,νi)] where OP is
a logical OR if positive is the most common class and a
logical AND otherwise.

Multiple-concept learning

As presented in sections 2.1 and 2.3, MIP problems and
MPP problems can be reduced to multiple-concept mono-
instance learning (rvf or oinf- and oinf+). Once learned, these
concepts can be used to characterize the initial concept that
is looked for. One of the difficulties of multiple-concept
learning comes from the fact that we don't know any
examples of these multiple-concepts in the traditional
meaning of the term. All we know is whether the
disjunction of the inf applied to co-instances is positive or
negative. Intuitively, we can say that ignoring the
specificities of the problem will not help to learn multiple-
concepts satisfactorily. Ignoring a multiple-problem means
that we consider that all the instances of the same example
are from the same class as the example. In the jailer
problem, this comes down to considering that all the keys
on a bunch of keys open the door if the bunch is useful.
A classical learning algorithm that is applied without any
modifications to multiple-problems would learn a
description which covers all the instances of all the
positive examples of a multiple concept. It is obvious that
such a description rarely exists in MIP problems and that it
is even more highly unlikely in the framework of MPP.
After all, all we need is for two examples to have identical
instances but to be classified differently for such a
description not to exist.
In the jailer problem, if two bunches of keys one of which
is useful, the other useless each contains a key the
descriptions of which are very similar or even identical, it
will be impossible to find this description. Let us suppose
that the bunches of keys are represented by instances of
keys represented by pairs (x,y), where x is the size of the
key and y the number of notches. Let us also suppose that
there are three useful bunches of keys (the instances of
keys being represented by squares, triangles and
rectangles, respectively) and two useless bunches (the
instances being represented by circles and ellipses,

respectively). Let us consider two-dimensional space
where each instance of a bunch of keys has been
represented by the shape of the bunch of keys (cf. Fig. 4).
The only MPP-solving algorithms are rectangle learning
algorithms. The method proposed by Dietterich applies to
multiple-instances represented by vectors in X=Rd. The
multiple-concept that is being looked for is represented by
a rectangle in Rd. The heuristics used consists in finding a
small rectangle that is consistent with the data in that at
least one of the instances of each of the positive initial
examples is contained in it and none of the instances of the
negative initial examples is (APR1 in figure 4). This
constraint can be relaxed if no box has been found so that
only (100-ε)% of examples are covered (i.e. that at least
one of their instances is in the rectangle). Note that the
search problem is already NP-complete in itself (Blum and
Kalai 1997). Then the APR that has been found is dilated
(APR2 in figure 4) in order to increase its power to
generalize, based on a kernel density estimate.

MIP learnability

Members of the COLT community are showing increasing
interest in multiple-instance problems. Long and Tan
(Long and Tan 1996) were the first to show the PAC-
learnability of the MIP problem under restrictive
conditions. They showed that in this framework, the
problem is PAC-learnable with a bound which has since
been pushed out considerably. Auer et al. (Auer, Long et
al. 1997) consider APR-learning under the condition that D
(distribution on instances of an initial example) be a
product of distributions and that the number of instances
per example be a constant r. They showed that the
rectangles are PAC-learnable with m=O(d2r2/ε2) examples
where d is the dimension of the instance vectors, the time
necessary for learning therefore being in O(dxmxlog(m)).
Auer (Auer 1997) did a theoretical analysis of the problem
and derived an algorithm, MULTINST, which gives
performance levels comparable to those of Dietterich et al.
(97). It also learns APR and is no longer bound by the
limitation of having as many instances for each example.
What is particularly interesting in his paper is the fact that
he started from theoretical considerations and ended up
developing a competitive practical algorithm. As for Blum
and Kalai (Blum and Kalai 1997), they elegantly reduced

the MIP to a problem of PAC-learning with a one-sided
random classification noise.

Adapting concept learning algorithms to learn
multiple-concepts

As demonstrated informally in section 2, the learning of
multiple-concepts comes down to the mono-instance
learning of multiple-concepts. Moreover, section 2.5 has
shown that the difficulty of learning such multiple-
concepts is that there are no learning examples as
classically used in the mono-instance framework. There
exists a large number of algorithms that solve the mono-
instance concept learning problem. The most popular ones
are top-down inductive systems (TDIS) (Ganascia 1993).
They may be separated into two categories: divide-and-
conquer approaches and cover-and-differentiate ones:
The divide-and-conquer algorithms generally represent
hypotheses as decision trees (ID3, C4.5, etc.) and many use
a heuristics based on a variant of the entropy function to
build the tree iteratively.
The cover-and-differentiate algorithms generally represent
hypotheses either as sets of if-then decision rules (AQ,
CHARADE, etc.) or as decision lists (CN2). Many use a
heuristics based on the number of examples covered by the
rules.

To date, the main approach for solving the multiple-
instance problem is to learn APR. This section proposes
extensions to classical concept learning algorithms in order
to solve the multiple-problems, in particular through a
multiple entropy function and a multiple coverage
function.

Representing multiple-concepts and classifying
multiple-instances

It is assumed that the basic notions of decision trees as
defined in ID3 or C4.5 (Quinlan 1986) and those of if-then
rules as defined in AQ or CHARADE (Ganascia, 1993) are
familiar to the reader . A decision tree used to represent
multiple-concepts will be called multiple-decision tree for
the sake of clarity. Similarly, a classification rule used to
represent multiple-concepts will be called multiple-rule.
In a decision tree, a leaf may be labeled positive (resp.
negative) if it is pure - contains only positive (resp.
negative) instances - or if it contains (100-ε)% positive
(resp. negative) instances in the case of pre-pruning. Here
the same labeling of tree leaves will be kept but both the
way the multiple-tree is used to classify a new object and
the procedure used to choose the attribute to grow the tree
will be modified. In this way, a multiple-decision tree has
the same structure as a classical decision tree. In the MIP, a
single multiple-decision tree is enough. To classify a new
object in the MIP where the concept inf is represented as a
multiple-tree, the set of instances of a new object is passed

#notch

size

APR1

APR2

14 instances of
five examples

+

+

+

-

-

Figure 4 - The rectangle solution to the jailer MIP

through the tree. If (or as soon as) one positive leaf is
reached by one of the instances, the object is classified
positive, negative otherwise.
In contrast, in the MPP two multiple-trees have to be
learned, a T+ for the concept oinf+ and a T- for the concept
oinf-. To classify a new object the set of instances of a new
object is passed through the two trees T+ and T-. If one
positive (resp. negative) leaf is reached by one of the
instances in T+ (resp. T+) and none in T- (resp. T+), the
object is classified positive (resp. negative). It might
happen that neither of these two conditions is reached. In
this case it means that the new object only contains
IMPERCEPTIBLE instances, i.e. instances that belong to
both positive and negative examples, in which case the
object may be classified in the most common class. Figure
5 uses the jailer problem to illustrate the notions presented.

Figure 5 - Two multiple-decision trees used on a jailer problem

Multiple-rules will be defined using the same philosophy
as for decision trees. Such rules will differ from classical
classification rules both in the way they are used to classify
a new object and in the way they are learned.

To classify a new object in multiple problems, the set of
instances of a new object is tested on the rules. If at least
one positive (resp. negative) conclusion and no negative
(resp. positive) conclusions are triggered the object is
classified positive (resp. positive). If no rules are triggered,
the object only contains IMPERCEPTIBLE instances and
the most common class may be chosen.

Learning multiple decision-trees and rules

Both MIP and mono-instance framework use attribute-
value representation. In addition, classical learning tools
use generate-and-test algorithms, exploring a search space
which is as suitable for mono-instance as for MIP. Hence,
only the ‘test’ part of the algorithm will have to be
modified. We will therefor describe the MIP adaptation of
heuristics used in mono-instance learners.

Multiple-instance entropy and coverage for multiple-
concept learning

Classically, the growing of a decision tree is guided by a
heuristics based on entropy or a related criterion. Given a
collection S containing p positive instances and n negative
instances of some target concept, the entropy of S relative
to this boolean classification is :

The information gain Gain(S,A) of an attribute A relative
to a collection of instances S is defined as:

Let us define an extension to both the entropy of S and the
gain of an attribute w.r.t. S in the multiple-instance
framework. In this context, let us consider a set S
containing p positive instances of the concept inf (or oinf+
or oinf-) and n negative instances of the concept. Let us
introduce two functions π and ν that, given a set of
instances S, return the number of different positive
examples and negative examples that the elements of S are
instances of respectively. The entropy that characterizes
the (im)purity of an arbitrary collection of examples ought
to be redefined here so as to take into account the fact that
one example is represented by several instances.

 In multiple-problems, the goal is to learn a concept for
discriminating examples and not instances. Therefore, the
(im)purity ought not to be measured by p and n, the
number of positive or negative instances of the concepts inf
but using π(S) and ν(S), which represent the number of
examples that have representatives in S. The multiple-
instance entropy and gain may therefore be defined as:

)
)()(

)(
(2log

)()(

)(
)

)()(

)(
(2log

)()(

)(
)),((

SS

S

SS

S

SS

S

SS

S
pnSmultiEntropy

νπ
ν

νπ
ν

νπ
π

νπ
π

+
×

+
−

+
×

+
−=

)(

)(
)()(

)()(
)()),,((vSmultiEntropy

AValuesv
SS

vSvS
SmultiEntropyApnSmultiGain ×

∈
+
+−= ∑ νπ

νπ

Entropy S n p
p

p n

p

p n

n

p n

n

p nmono ((,)) log () log ()= −
+

×
+

−
+

×
+2 2

Gain S n p A Entropy S
S

S
Entropy Sv

v Values A
v((,),) () ()

()

= − ×
∈
∑

Shape

#notches

=1
>1

false

false

in-U jag
ged

A multiple-decision tree for the
“only in useless bunch” concept

true

T-

Shape

U-sh
ap

ed jagged

true
false

A multiple-decision tree for the
“only in useful bunch” concept

T+

Examples of the concept «useful bunch» :

T1 (useful bunch)

T2 (useless bunch)

The MDL principle used to define an explicit measure of
the complexity for encoding the training instances and the
multiple-decision tree (Quinlan and Rivest 1989) can be
extended similarly. Based on the multiple entropy measure,
ID3-M, C4.5-M have been built as multiple versions of the
corresponding algorithms.

Learning multi-rules

This section focuses on set of rules learners that are based
on a coverage measurement. The growing procedure of the
set of rules used in such kinds of algorithms relies on the
notion of coverage. To learn multiple-rules, it is necessary
to redefine this very notion of coverage. In a classical
framework, an instance x is covered by a generalization G
(noted COVER(G,x)) if G is more general than x.
To measure the degree of generality of a generalization
w.r.t. a set of examples, this notion should be refined. In
the multiple instance framework, a generalization G
“multi-cover” an objecti if it covers at least one of its
instances:

Based on this measure, AQ-M, CN2-M and CHARADE-M
have been built that are multiple versions of the
corresponding algorithms.

Predicting mutagenecity using MPP
framework

The prediction of mutagenecity problem is considered as a
typical benchmark for first-order induction tools. In fact,
The highly structured nature of molecules prohibits the
straightforward use of propositional representation.
The learn goal is here to generate a theory which, provided
a given molecule, will best predict its mutagenic activity.
The available database consist of 230 nitro-aromatic
compounds, often split in two sets, of 188 and 42
molecules each. For each molecule, the available data
consist of :
An atomic representation : The predicate atom/5 describes
each atom, including its chemical element, its type (e.g.
aromatic atom), and its partial charge, which depends on
the neighboring atoms. The predicate bond/3 describes the
bonded atoms.
A "group level" representation: benzene rings, nitro
groups, and other high level structures present in the
molecules are described.

A molecular-property level: two global attributes
concerning the entire molecule are given, e.g.
hydrophobicity (logp/2), lowest molecular orbital
(lumo/2).

Results and discussion

We used here a multiple version of Cohen's RIPPER
propositional learner. This tool, entitled 'RippMi' induces
rules given bags of instances. The REMO algorithm was
also involved to generate bags of instances given a first-
order description of molecules. To achieve this
representation shift, the user was asked by REMO to
provided as additional input data a description of the
intrinsic structure of the examples. In our case, we
specified that each example has a main object - a molecule
– associated with two attributes, and that this object
contains smaller ones - atoms - associated with their own
set of attributes.
Given that information, REMO will generate a fist MPP
representation, launch the learner, and iteratively shift
towards more complex representation, until the set of rules
becomes acceptable.
Such representation will be denoted by the different parts
contained in the instances. For example,
{molecule+2atom} indicates that for a given molecule,
each instance contains the two attributes relative to that
molecule, as well as the attributes of 2 atoms. {atom}
denotes a representation wherein one instance corresponds
to one atom. Table 1 displays the results obtained by a 10-
fold crossvalidation, using various MPP-representations.

Surprisingly, the best accuracy was obtained using the
near-simplest representation : {molecule+atom}. An
example of rules generated by RippMi with this
representation is:

Representation Accuracy
{atom} 0.75 (0.04)
{2 atoms} 0.78 (0.02)
{molecule+atom} 0.88 (0.02)
{molecule+2atoms} 0.88 (0.02)

Table1: RippMi’s accuracy using various representation of
dataset containing 188 compounds.

(covers 18 examples)
active(M):- logp(M,L), L >= 3.37,

lumo(M,Lu), Lu <= -1.361,
atm(M,A,Elt,Typ,PCharge),
PCharge <= -0.376.

(covers 46 examples)
active(M) :-

atm(M,A,Elt,Typ,PCharge),
member(Typ,[27,51,31]),
PCharge <= -0.085.

COVERMULTI(G,objeti) ←∃j | COVER(G,instancei,j)

COVERAGEmulti(G)= | {objeti ; COVERMULTI(G,objeti)} |

With such a representation, given some molecular
properties, it becomes possible to determin whether a
molecule is or not mutagenic only by looking at its atoms
one by one. Nevertheless, we cannot state from these
results that a single atom is responsible for the
mutagenecity of a molecule. In fact, the atomic attributes
most often used by RippMi during induction do not depend
only on the atom they belong too : the partial charge, for
example, can only be computed with the knowledge of the
neighboring atoms; the type of the atom also depends on
its environment. It is, on the other hand, highly probable
that one of the atoms responsible for mutagenecity of a
molecule will be covered by a rule. It is therefore
conceivable to discover an entire group of atom
responsible for mutagenecity, starting from a single atom
of this group. One of our research goals would be,
assuming the previous hypothesis, to investigate more
complex representation (i.e. involving several atoms)
leading to simpler theories.

Comparing results with other learning systems

We have performed experiments to compare our system
with Progol and a few others, using the same dataset of
188 compounds and the same background knowledge. The
results are summarized in the table below.

 Table 2: accuracy using k-fold validation

Despite the fact that RippMi uses a greedy-search
algorithm, its shows quite competitive in terms of
predictive accuracy, with respect to other learners. In
addition, it is much faster – only 2.6 seconds to generate
rules with {molecule+atom} representation - probably
because of its simplicity, compared to first-order learners.
The results obtained on this real-world problem shows that
the multi-instance paradigm, sort of “missing link”
between propositional and first order representation, is
very promising for a wide range of future biochemical
learning problems.

Conclusion

The problem of supervised multiple-instance learning is a
recent learning problem which has excited interest in the
learning community. The problem is encountered in
contexts where an object may have several alternative
vectors to describe its different possible configurations.
This paper has shown that the problem is subsumed by the
multiple-part problem, which can play a key role in
relation-learning algorithms and in inductive logic
programming (Zucker et al., 1998). Multiple-instance
learning were first applied to the prediction of drug
activity. Very recently, Maron et Lozano-Pérez have

proposed a framework called Diverse Density for solving
multiple-instance problems (Maron et Lozano-Pérez 1998).
Solving multiple-problems using classical algorithms
raises important subtle issues that have been analyzed here.
The paper has shown how these problems can be solved
using multiple-concept mono-instance learning algorithms.
Extensions to classical algorithms have been proposed to
solve these problems by learning decision trees and
decision rules. They are based on two notions: multiple-
instance entropy and multiple-instance coverage. Thanks
to these modifications it has been possible to implement
the programs ID3-M, AQ-M, C4.5-M, CN2-M,
CHARADE-M, and RippMi (the Java implementations of
these programs will be available by request to the authors).
Our practical experiments on the mutagenesis problem
show that our approach performs well, and that multi-
instance algorithms can handle numeric as well as
symbolic data.
Many questions remain unanswered concerning multiple-
problem solving and these questions can all be followed
up. As far as can be ascertained, no theoretical research has
yet been done on MPP problem learnability but it is highly
likely that it can be reduced to a multiple-instance problem
in which noise is injected. As for practical research, many
approaches need to be tried and neural algorithms still
have to be found for multiple-instance and multiple-part
problems.

References

Auer, P. 1997. On learning from multi-instances examples.
Empirical evaluation of a theoretical approach. Fourteenth
International Conference on Machine Learning, ICML'97,
pp. 21-29.

Auer, P., Long, P. 1997. Approximating hyper-rectangles:
Learning and pseudo-random sets. Proceeding of the 29th
Annual ACM Symposium on Theory of Computation.

Blum, A. and A. Kalai 1997. “A note on learning from
multiple-instances examples” Machine Learning .

Cohen, W. 1990. An analysis of Representation Shift In
Concept Learning. Seventh International Conference on
Machine Learning, Austin, Texas.

Cohen, W. 1995. Fast Effective Rule Induction.
International Conference on Machine Learning.

Dietterich, T. 1990. Inductive Learning from Preclassified
Training Examples. Readings in Machine Learning: 45-56.

Dietterich, T., R. Lathrop, et al. 1996. “Solving the
Multiple-Instance Problem with Axis-Parallel Rectangles.”
Artificial Intelligence 89(1-2): 31-71.

Progol Linear regression Fors RippMi
 0.88 0.89 0.89 0.88(0.02)

Ganascia, J.-G. 1993. TDIS: an Algebraic Formalization.
13th International Joint Conference on Artificial
Intelligence, Chambéry, France, Morgan Kaufmann.

Giordana, A. and L. Saitta 1990. Abstraction: a general
framework for learning. Working notes of the AAAI
Workshop on Automated Generation of Approximations
and Abstraction, Boston, MA.

Korf, R. E. 1980. “Towards a Model for Representation
Change.” Artificial Intelligence 14: 41-78.

Long, P. and L. Tan. 1996. PAC Learning Axis-aligned
Rectangles with respect to Product Distributions from
Multiple-instance Examples. Proceedings of the 9th
Annual Conference on Computational Learning Theory,
COLT' 96, Desenzano del Garda, Italy, ACM, Inc.

Maron, O. and T. Lozano-Pérez. 1998. “A Framework for
Multiple-Instance Learning.” Neural Information
Processing Systems (to appear).

Murphy, P. and D. Aha 1994. UCI repository of machine
learning databases, Dept. of Information
And Computer Science, Irvine: CA.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Quinlan, J.-R. 1986. “Induction of Decision Trees.”
Machine Learning(1): 81-106.

Quinlan, J. R. and R. Rivest 1989. “Inferring Decision
Trees Using the Minimum Description Length Principle.”
Information and Computation 80: 227-248.

Sebag, M. and C. Rouveirol 1997. Tractable Induction and
Classification in First Order Logic. Fifteenth International
Joint Conference on Artificial Intelligence, IJCAI'97,
Nagoya, Japan, Morgan Kaufmann.

Srinivasan, A., S. Muggleton, et al. 1997. The Predictive
Toxicology Evaluation Challenge. Fifteenth International
Joint Conference on Artificial Intelligence, IJCAI'97,
Nagoya, Japan, Morgan Kaufmann.

Subramanian, D. 1989. Representational Issues in Machine
Learning. The sixth international Workshop on Machine
Learning, Ithaca, NY, Morgan Kaufmann Publishers.

Zucker, J.-D. and J.-G. Ganascia 1994. Selective
Reformulation of Examples in Concept Learning.
International Conference on Machine Learning, New-
Brunswick, Morgan Kaufmann Publishers.

Zucker, J.-D. and J.-G. Ganascia 1996. Changes of
Representation for Efficient Learning in Structural
Domains. International Conference in Machine Learning,
Bari, Italy, Morgan Kaufmann.

Zucker, J.-D., J.-G. Ganascia, Bournaud. I. 1998.
“Relational Knowledge Discovery in a Chinese Characters
Database.” Applied Artificial Intelligence Journal, Special
Issue on KDD in Structural Domains (to appear).

