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Abstract 
In recent work, Dietterich et al. (1997) have presented the 
problem of supervised multiple-instance learning and how 
to solve it by building axis-parallel rectangles. This problem 
is encountered in contexts where an object may have 
different possible alternative configurations, each of which 
is described by a vector. This paper introduces the multiple-
part problem, which is more general than the multiple-
instance problem, and shows how it can be solved using the 
multiple-instance algorithms. These two so-called 
"multiple" problems could play a key role both in the 
development of efficient algorithms for learning the 
relations between the activity of a structured object and its 
structural properties and in inductive logic programming. 
This paper analyzes and tries to clarify multiple-problem 
solving. It goes on to propose multiple-instance extensions 
of classical learning algorithms to solve multiple-problems 
by learning multiple-decision trees (ID3-M, C4.5-M) and 
multiple-decision rules (AQ-M, CN2-M,Ripper-M). In 
particular, it suggests a new multiple-instance entropy 
function and a multiple-instance coverage function. Finally, 
it successfully applies the multiple-part framework on the 
well-known mutagenesis prediction problem. 

Introduction   

Supervised learning can be seen as the search for a 
function h, a set of objects O towards a set of results R that 
will be a good approximation of a function f for which the 
result is only known for a certain number of objects of O, 
the examples of f (Dietterich 1990). This problem consists 
in inducing the description of h from a set of pairs 
(description(objecti), resulti=f(objecti)) - the learning 
examples - and criteria - learning bias - that enable a space 
of functions of O towards R to be chosen and one function 
to be preferred to another. The description of objecti is 
often referred to as an instance of objecti. 
 
 

Recent research has shown that this traditional framework 
could be too limited for complex learning problems 
(Zucker and Ganascia 1994; Dietterich, Lathrop et al. 
1996; Long and Tan 1996; Zucker and Ganascia 1996; 
Auer 1997). This is particularly the case when several 
descriptions of the same object are associated with the 
same result, baptized a multiple-instance problem (MIP) 
by Dietterich et al. (Dietterich, Lathrop et al. 1996). Thus 
the term multiple-instance characterizes the case where the 
result f(objecti) is associated not with one instance but with 
a set of instances {instancei,1, instancei,2, ... instancei,νi}, (cf. 
Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chemistry is a domain par excellence where these 
multiple-instance problems are to be found. Dietterich et 
al. present the task of classifying aromatic molecules 
according to whether or not they are "musky" (Dietterich, 
Lathrop et al. 1996). Several steric configurations of the 
same molecule can be found in nature, each with very 
different energy properties. In this way it is possible to 
produce several descriptions of the different configurations 
- instances - of this molecule. These descriptions 
correspond to measurements obtained in each of the 
different configurations (instances m17,1 and m17,2 of 
molecule m17, cf. Fig. 2). To simplify, let us  say that a 
molecule is said to be musky if, in one of its 
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Figure 1 - Classical and multiple-instance frameworks 



configurations, it binds itself to a particular receptor. The 
problem of learning the concept "musky molecule" is one 
of multiple-instance learning. Maron and Lozano-Pérez 
consider other possible applications: one is to learn a 
simple description of a person from a series of images that 
are labeled positive if the person is somewhere in the 
image and negative otherwise. The other is to deal with a 
high amount of noise in a stock selection problem.  
 

 
 
Dietterich et al. have proposed different variations of a 
learning algorithm where the concepts are represented by 
axis-parallel rectangles (APR). They observed that "a 
particularly interesting issue is how to design multiple-
instance modifications for decision trees, neural networks 
and other popular machine learning algorithms" 
(Dietterich, Lathrop et al. 1996). 
This paper will analyze the difficulties raised by multiple-
instance problems in general. It will show the link between 
this problem and the multiple-part problem (MPP), in 
which instances are not necessarily alternative descriptions 
of the object but may be descriptions of different parts of 
the object. "Multiple-extensions" will be proposed for 
classical algorithms in order to handle MIP and MPP 
problems by learning decision trees and rule-based 
systems. The main reasons that motivate us for finding 
such algorithms are that MMPs play a central role in 
learning structure-activity relations. This is the problem 
that was solved in the REMO learning system (Zucker and 
Ganascia 1994; Zucker and Ganascia 1996), REPART 
(Zucker, Ganascia et al. 1998) and STILL (Sebag and 
Rouveirol 1997) Inductive Logic Programming systems. 
Section 2 is a more formal presentation of the MIP 
problem, shows how it is linked to the MPP problem and 
explains how in the two cases problem solving comes 
down to learning special concepts called multiple ones. 
Section 3 proposes extensions to classical algorithms in 
order to solve the multiple-problems and in particular 
suggests an entropy function and a multiple-instance 
coverage function. Section 4 presents the results of 
predicting mutagenecity with the multiple-part framework. 

Multiple-instance and multiple-part problems 

Definition of multiple-instance problems 
 
For the sake of clarity, let us consider the case where f is a 
function with boolean values - a concept - the value of 
which is known for a subset of O f(objecti)=TRUE (positive 
example) or FALSE (negative example) - depending on 
whether or not objecti belongs to the concept. We shall 
note instancei,j the jth description of object objecti. We shall 
call X the representation space for instances and co-
instances of instanceik, the other instances of the example 
objecti, i.e. the set {instancei,j≠k}. Function h, which we are 
trying to learn and must be a good approximation of f, is a 
function which associates a boolean value with a subset of 
the part of X, which can be noted by h: 2X

Æ {TRUE, 
FALSE}. A learning example in the multiple-instance 
framework of is represented in the following form: 
({instancei,1 , ... , instancei,j, ..., instancei,νi}, f(objeti)) 
It should be added that the number νi can vary depending 
on objecti and that the suffix j of 1 to νi given to instances 
instancei,j is purely arbitrary. Note that in the limited 
theoretical research that has been done on the PAC-
learnability of this problem, the number vi is equal to a 
constant r (Long and Tan 1996; Auer 1997; Auer, Long et 
al. 1997; Blum and Kalai 1997). 
In the multiple-instance framework, Dietterich et al. (1997) 
suggest that if the result of f is positive for an objecti it is 
because at least one of its instancesij has produced this 
result. If the result is negative it means that none of its 
instances can produce a positive result. The researchers 
support this hypothesis by the fact that in the domain of 
molecular chemistry they are studying this is precisely the 
case. Here, let us call this hypothesis the linearity 
hypothesis. If we use the vocabulary introduced above, the 
multiple-instance problem presented by Dietterich et al. 
(1997) in their seminal paper can be defined as follows: 
 
Definition 1 (MIP): The multiple-instance learning 
problem consists in learning a concept from examples that 
are represented by sets of instances that describe them, on 
the linearity hypothesis. 

Representation shifts for MIPs 
 
The function h to be learned is more complex to learn than 
a traditional concept since it takes its values from the set 2X 
of the parts of X which has a cardinal that increases 
exponentially with that of X. Today, no algorithm exists 
that is capable of solving this problem directly. A possible 
approach to too complex a problem would be to try to 
change the representation in order to find a representation 
where learning would be less complex (Subramanian 1989; 
Cohen 1990; Giordana and Saitta 1990). Using the 
linearity hypothesis, it is possible to introduce a boolean 
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Figure 2 -Two instances of the same molecule 



concept inf which no longer applies to sets of instances but 
instead to one single instance of these sets. An instance 
belongs to this boolean concept if "the instance has 
produced the result". This representation shift of a concept 
defined on 2X by a concept defined on X can be said to be 
isomorphic (Korf 1980) in that it changes the structure of 
the problem but not the amount of information. The 
concept thus defined will be called a "multiple-concept". 
Following on from the linearity hypothesis, h is therefore 
defined as a disjunction of the multiple-concept applied to 
the different instances of an object: 
 

f(objeti) = rvf(instancei,1) ∨ .... ∨ rvf(instancei,νi) 
 
Concept rvf can be read as "responsible for the value of f". 
The multiple-instance problem can be reformulated with 
respect to this new function. 
 
Property 1 : The problem of multiple-instance learning of 
a concept f comes down to the mono-instance learning of a 
concept rvf. The description of f is given as the logical OR 
of the values of rvf on the different instances of an object. 
 
 
 
 
 
 
 
 
 
 
Figure 3 gives Property 1 in graphic form. If defining MIP 
is relatively easy, understanding and solving it are far less 
simple. To illustrate the problem intuitively, let us consider 
the problem we have decided to call the simple jailer 
problem. Let there be a locked door and a set of N bunches 
of keys containing a variable number of keys such that N+ 
of the bunches of keys are labeled "useful" and N- are 
labeled "useless" (not useful). A bunch of keys is said to be 
useful if at least one of its keys opens the door, otherwise it 
is considered useless. The concept of usefulness could be 
represented by two classes: that of useful bunches of keys 
and that of useless bunches of keys. Learning the concept 
useful bunch of keys is an MIP. Starting from a set of 
positive and negative examples of f (here, useful and 
useless bunches of keys), the concept rvf must be learned, 
which characterizes the keys which open the door. This 
problem is said to be "simple" as it presumes the linearity 
hypothesis to hold, i.e. at least one key per useful bunch of 
keys is sufficient to open the door. 
Strictly speaking, the jailer problem doesn't correspond 
exactly to the original MIP problem. In the original 
definition, the instances are all representative of the same 
object, of the same reality. Thus, in the case of chemical 
molecules, each configuration is a possible state of the 
molecule. What is important therefore is that in the MIP 
problem, the configurations cannot appear simultaneously 

since each of them characterizes the object taken as a 
whole. In order to allow for this exclusive aspect between 
the different co-instances in the jailer problem, we need to 
say that a bunch of keys is in fact a "magic" (or quantum) 
key ci which takes a shape from among νi shapes when 
introduced into the keyhole and that it is useful if one of 
the shapes it can take opens the door. 
This variable character of the measurements of the same 
object in the MIP problem means we can interpret MIP as 
a classical mono-instance problem that has been made 
ambiguous (Blum and Kalai 1997). The label of the object 
is not associated with one single description of the object 
(a magic key, a molecule) but with several descriptions 
which are all of the same object but which represent 
different states of the object (a key, a configuration), these 
different states all being potential explanations of the 
result. It is this type of ambiguity that must be allowed for 
in MIP learning algorithms. It is also on this property that 
the work on the PAC-learnability of MIP is based in order 
to reduce it to known problems. 
 
 

The multiple-part problem and how it is linked to 
the multiple-instance problem 
 
In work done before the development of MIP problems, 
researchers have introduced a problem that was apparently 
similar to the MIP and that was baptized a reformulated 
problem (Zucker and Ganascia 1994) but which, for 
reasons of clarity, we will henceforth be called the 
multiple-part problem (MPP). Informally, the MPP 
characterizes concept learning from the description of parts 
of examples. MPP-solving lies at the heart of the REMO 
system which enables the efficient learning of relations 
from several thousand structured examples (Zucker and 
Ganascia 1996). In order to build a disjunctive version 
space, the STILL system solves an MPP problem 
iteratively, in which it takes one positive example at a time 
(Sebag and Rouveirol 1997). This system has obtained the 
best results for the ILP problem of mutagenesis 
(Srinivasan, Muggleton et al. 1997). 
In MPP, as in MIP, each example is represented by a bag 
of instances. In MIP, an instance is a snapshot of the entire 
object, whereas in MPP, an instance is a small part of the 
object. Let’s consider, for example, the application of MIP 
and MPP to chemistry. Has shown before, in MIP, the bag 
of instances related to a molecule would be measurements 
on various configurations of this molecule. In MPP, we 
would have to cut a molecule in small parts, each of which 
would become an instance. Of course, these parts will have 
to be homogenous. Putting the description of a single 
atom, or even of a pair of bonded atoms in each instance 
would both be valid MPP representations. In the first case, 
the example would be represented by a bag of attribute-
value descriptions of each atom. In the second case, each 
possible pair of bonded atoms of a molecule will become 
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Figure 3 - Multiple-instance learning of f and mono-
instance learning of rvf. 



an instance of that molecule. We can see now that the jailer 
problem mentioned above is more a MPP problem than a 
MIP problem. In fact, the keys are seen as parts of the 
same bunch and each of the instances describes one of the 
keys. 
As seen above, there can be many valid MPP 
representation of the same data, depending on the size of 
the chosen parts. The linearity hypothesis, stating that a 
single instance can be used to identify the belonging of an 
example to the studied concept, depends here on the 
representation. For example, if we now that the presence of 
a carbon linked to a nitrogen atom makes a molecule 
highly active, it will then be impossible to predict such an 
activity by examining atoms individually. Hence, the MPP 
representation for which an instance corresponds to an 
single atom won’t respect linearity hypothesis, whereas the 
one for which an instance corresponds to a pair of bonded 
atoms will. 
 Choosing the appropriate representation in MPP, and 
moreover, shifting between representations, is a crucial 
problem, which is deeply studied in (Zucker and Ganascia 
1996). We will ourselves here focus on the induction 
aspects of the learning process in MIP and MPP, without 
assuming the linearity hypothesis for MPP, because the 
validity of the representation won’t be assured. The 
multiple-part problem can be defined more formally as 
follows: 
 
Definition 2 (MPP): The multiple-part learning problem 
consists in learning a concept from examples that are 
represented by sets of instances that describe their parts, 
without the linearity hypothesis. 
 

Representation shift for MPP problems 
 
Given the fact that the linearity hypothesis is not assumed, 
one way wonder if it is still possible to introduce a function 
as in the MIP which no longer applies to sets of instances 
but instead to one single instance of these sets? The answer 
is yes, all we need to do is to consider a new function inf 
with the particular semantics "belongs to an object with the 
result f". However, in the MPP it becomes possible, even 
in the absence of noise, for two instances (two instances of 
keys, for example) to be absolutely identical but to come 
from objects from different classes (one from a useful 
bunch of keys, the other from a useless one, for example). 
Therefore the function inf must by definition take the value 
"IMPERCEPTIBLE" on this type of instance, the 
consequence being that inf is not a boolean function.  
If we want to reduce the problem to one of concept 
learning, and therefore to a boolean function, as in the case 
of MIP, it is necessary either to group the values "FALSE" 
and "IMPERCEPTIBLE" in one value "NOTTRUE", or to 
group the values "TRUE" and "IMPERCEPTIBLE" in one 
value "NOTFALSE". In this way it is possible to replace 
learning the function inf by learning the two concepts oinf+ 
(only in f+) and oinf- (only in f-). In the jailer problem, they 

correspond to the concepts of keys found in bunches of 
keys which open (resp. do not) open the door and in no 
bunch of keys which do not (resp. do). Alternatively, one 
could also say that they "are only to be found among the 
objects that satisfy (resp. do not satisfy) the concept f". If 
the MPP problem is more general than the MIP one, it is 
above all on the semantic level that this is true since, from 
a computational point of view, the two cases require 
learning multiple-concepts and then performing a logical 
operation on the values of these multiple-concepts for the 
different instances of an object. 
Property 2: The problem of multiple-part learning of a 
concept f comes down to the mono-instance learning of 
two concepts oinf- and oinf+, where f is obtained as follows: 
f(objeti) = [oinf+(instancei,1) ∨ .... ∨ oinf+(instancei,νi) ] OP 
¬[ oinf-(instancei,1) ∨ .... ∨ oinf-(instancei,νi) ] where OP is 
a logical OR if positive is the most common class and a 
logical AND otherwise. 
 

Multiple-concept learning 
 
As presented in sections 2.1 and 2.3, MIP problems and 
MPP problems can be reduced to multiple-concept mono-
instance learning (rvf or oinf- and oinf+). Once learned, these 
concepts can be used to characterize the initial concept that 
is looked for. One of the difficulties of multiple-concept 
learning comes from the fact that we don't know any 
examples of these multiple-concepts in the traditional 
meaning of the term. All we know is whether the 
disjunction of the inf applied to co-instances is positive or 
negative. Intuitively, we can say that ignoring the 
specificities of the problem will not help to learn multiple-
concepts satisfactorily. Ignoring a multiple-problem means 
that we consider that all the instances of the same example 
are from the same class as the example. In the jailer 
problem, this comes down to considering that all the keys 
on a bunch of keys open the door if the bunch is useful. 
A classical learning algorithm that is applied without any 
modifications to multiple-problems would learn a 
description which covers all the instances of all the 
positive examples of a multiple concept. It is obvious that 
such a description rarely exists in MIP problems and that it 
is even more highly unlikely in the framework of MPP. 
After all, all we need is for two examples to have identical 
instances but to be classified differently for such a 
description not to exist. 
In the jailer problem, if two bunches of keys one of which 
is useful, the other useless each contains a key the 
descriptions of which are very similar or even identical, it 
will be impossible to find this description. Let us suppose 
that the bunches of keys are represented by instances of 
keys represented by pairs (x,y), where x is the size of the 
key and y the number of notches. Let us also suppose that 
there are three useful bunches of keys (the instances of 
keys being represented by squares, triangles and 
rectangles, respectively) and two useless bunches (the 
instances being represented by circles and ellipses, 



respectively). Let us consider two-dimensional space 
where each instance of a bunch of keys has been 
represented by the shape of the bunch of keys (cf. Fig. 4). 
The only MPP-solving algorithms are rectangle learning 
algorithms. The method proposed by Dietterich applies to 
multiple-instances represented by vectors in X=Rd. The 
multiple-concept that is being looked for is represented by 
a rectangle in Rd. The heuristics used consists in finding a 
small rectangle that is consistent with the data in that at 
least one of the instances of each of the positive initial 
examples is contained in it and none of the instances of the 
negative initial examples is (APR1 in figure 4). This 
constraint can be relaxed if no box has been found so that 
only (100-ε)% of examples are covered (i.e. that at least 
one of their instances is in the rectangle). Note that the 
search problem is already NP-complete in itself (Blum and 
Kalai 1997). Then the APR that has been found is dilated 
(APR2 in figure 4) in order to increase its power to 
generalize, based on a kernel density estimate. 
 
 
 
 
 
 
 
 
 
 
 
 
 

MIP learnability 
 
Members of the COLT community are showing increasing 
interest in multiple-instance problems. Long and Tan 
(Long and Tan 1996) were the first to show the PAC-
learnability of the MIP problem under restrictive 
conditions. They showed that in this framework, the 
problem is PAC-learnable with a bound which has since 
been pushed out considerably. Auer et al. (Auer, Long et 
al. 1997) consider APR-learning under the condition that D 
(distribution on instances of an initial example) be a 
product of distributions and that the number of instances 
per example be a constant r. They showed that the 
rectangles are PAC-learnable with m=O(d2r2/ε2) examples 
where d is the dimension of the instance vectors, the time 
necessary for learning therefore being in O(dxmxlog(m)). 
Auer (Auer 1997) did a theoretical analysis of the problem 
and derived an algorithm, MULTINST, which gives 
performance levels comparable to those of Dietterich et al. 
(97). It also learns APR and is no longer bound by the 
limitation of having as many instances for each example. 
What is particularly interesting in his paper is the fact that 
he started from theoretical considerations and ended up 
developing a competitive practical algorithm. As for Blum 
and Kalai (Blum and Kalai 1997), they elegantly reduced 

the MIP to a problem of PAC-learning with a one-sided 
random classification noise. 

Adapting concept learning algorithms to learn 
multiple-concepts  

 
As demonstrated informally in section 2, the learning of 
multiple-concepts comes down to the mono-instance 
learning of multiple-concepts. Moreover, section 2.5 has 
shown that the difficulty of learning such multiple-
concepts is that there are no learning examples as 
classically used in the mono-instance framework. There 
exists a large number of algorithms that solve the mono-
instance concept learning problem. The most popular ones 
are top-down inductive systems (TDIS) (Ganascia 1993). 
They may be separated into two categories: divide-and-
conquer approaches and cover-and-differentiate ones:  
The divide-and-conquer algorithms generally represent 
hypotheses as decision trees (ID3, C4.5, etc.) and many use 
a heuristics based on a variant of the entropy function to 
build the tree iteratively. 
The cover-and-differentiate algorithms generally represent 
hypotheses either as sets of if-then decision rules (AQ, 
CHARADE, etc.) or as decision lists (CN2). Many use a 
heuristics based on the number of examples covered by the 
rules. 
  
To date, the main approach for solving the multiple-
instance problem is to learn APR. This section proposes 
extensions to classical concept learning algorithms in order 
to solve the multiple-problems, in particular through a 
multiple entropy function and a multiple coverage 
function.  

Representing multiple-concepts and classifying 
multiple-instances 
 
It is assumed that the basic notions of decision trees as 
defined in ID3 or C4.5 (Quinlan 1986) and those of if-then 
rules as defined in AQ or CHARADE (Ganascia, 1993) are 
familiar to the reader . A decision tree used to represent 
multiple-concepts will be called multiple-decision tree for 
the sake of clarity. Similarly, a classification rule used to 
represent multiple-concepts will be called multiple-rule. 
In a decision tree, a leaf may be labeled positive (resp. 
negative) if it is pure - contains only positive (resp. 
negative) instances - or if it contains (100-ε)% positive 
(resp. negative) instances in the case of pre-pruning. Here 
the same labeling of tree leaves will be kept but both the 
way the multiple-tree is used to classify a new object and 
the procedure used to choose the attribute to grow the tree 
will be modified. In this way, a multiple-decision tree has 
the same structure as a classical decision tree. In the MIP, a 
single multiple-decision tree is enough. To classify a new 
object in the MIP where the concept inf is represented as a 
multiple-tree, the set of instances of a new object is passed 
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Figure 4 -  The rectangle solution to the jailer MIP 



through the tree. If (or as soon as) one positive leaf is 
reached by one of the instances, the object is classified 
positive, negative otherwise. 
In contrast, in the MPP two multiple-trees have to be 
learned, a T+ for the concept oinf+ and a T- for the concept 
oinf-. To classify a new object the set of instances of a new 
object is passed through the two trees T+ and T-. If one 
positive (resp. negative) leaf is reached by one of the 
instances in T+ (resp. T+) and none in T- (resp. T+), the 
object is classified positive (resp. negative). It might 
happen that neither of these two conditions is reached. In 
this case it means that the new object only contains 
IMPERCEPTIBLE instances, i.e. instances that belong to 
both positive and negative examples, in which case the 
object may be classified in the most common class. Figure 
5 uses the jailer problem to illustrate the notions presented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5 - Two multiple-decision trees used on a jailer problem 

 
Multiple-rules will be defined using the same philosophy 
as for decision trees. Such rules will differ from classical 
classification rules both in the way they are used to classify 
a new object and in the way they are learned. 
 
To classify a new object in multiple problems, the set of 
instances of a new object is tested on the rules. If at least 
one positive (resp. negative) conclusion and no negative 
(resp. positive) conclusions  are triggered the object is 
classified positive (resp. positive). If no rules are triggered, 
the object only contains IMPERCEPTIBLE instances and 
the most common class may be chosen.  
 
 

Learning multiple decision-trees and rules 
 
Both MIP and mono-instance framework use attribute-
value representation. In addition, classical learning tools 
use generate-and-test algorithms, exploring a search space 
which is as suitable for mono-instance as for MIP. Hence, 
only the ‘test’ part of the algorithm will have to be 
modified. We will therefor describe the MIP adaptation of 
heuristics used in mono-instance learners. 
 
Multiple-instance entropy and coverage for multiple-
concept learning  
 
Classically, the growing of a decision tree is guided by a 
heuristics based on entropy or a related criterion. Given a 
collection S containing p positive instances and n negative 
instances of some target concept, the entropy of S relative 
to this boolean classification is :  
 
 
 
The information gain Gain(S,A) of an attribute A relative 
to a collection of instances S is defined as: 
 

  
 
Let us define an extension to both the entropy of S and the 
gain of an attribute w.r.t. S in the multiple-instance 
framework. In this context, let us consider a set S 
containing p positive instances of the concept inf (or oinf+ 
or oinf-) and n negative instances of the concept. Let us 
introduce two functions π and ν that, given a set of 
instances S, return the number of different positive 
examples and negative examples that the elements of S are 
instances of respectively. The entropy that characterizes 
the (im)purity of an arbitrary collection of examples ought 
to be redefined here so as to take into account the fact that 
one example is represented by several instances. 
 
 In multiple-problems, the goal is to learn a concept for 
discriminating examples and not instances. Therefore, the 
(im)purity ought not to be measured by p and n, the 
number of positive or negative instances of the concepts inf 
but using π(S) and ν(S), which represent the number of 
examples that have representatives in S. The multiple-
instance entropy and gain may therefore be defined as:  
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The MDL principle used to define an explicit measure of 
the complexity for encoding the training instances and the 
multiple-decision tree (Quinlan and Rivest 1989) can be 
extended similarly. Based on the multiple entropy measure, 
ID3-M, C4.5-M have been built as multiple versions of the 
corresponding algorithms.  
 

Learning multi-rules 
 
This section focuses on set of rules learners that are based 
on a coverage measurement. The growing procedure of the 
set of rules used in such kinds of algorithms relies on the 
notion of coverage. To learn multiple-rules, it is necessary 
to redefine this very notion of coverage. In a classical 
framework, an instance x is covered by a generalization G 
(noted COVER(G,x)) if G is more general than x. 
To measure the degree of generality of a generalization 
w.r.t. a set of examples, this notion should be refined. In 
the multiple instance framework, a generalization G 
“multi-cover” an objecti if it covers at least one of its 
instances: 
 
 
 
 
 
 
 
 
Based on this measure, AQ-M, CN2-M and CHARADE-M 
have been built that are multiple versions of the 
corresponding algorithms.  
 

Predicting mutagenecity using MPP 
framework 

 
The prediction of mutagenecity problem is considered as a 
typical benchmark for first-order induction tools. In fact, 
The highly structured nature of molecules prohibits the 
straightforward use of propositional representation. 
The learn goal is here to generate a theory which, provided 
a given molecule, will best predict its mutagenic activity. 
The available database consist of 230 nitro-aromatic 
compounds, often split in two sets, of 188 and 42 
molecules each. For each molecule, the available data 
consist of : 
An atomic representation : The predicate atom/5 describes 
each atom, including its chemical element, its type (e.g. 
aromatic atom), and its partial charge, which depends on 
the neighboring atoms. The predicate bond/3 describes the 
bonded atoms. 
A "group level" representation: benzene rings, nitro 
groups, and other high level structures present in the 
molecules are described. 

A molecular-property level: two global attributes 
concerning the entire molecule are given, e.g. 
hydrophobicity (logp/2), lowest molecular orbital 
(lumo/2). 

Results and discussion 
 
We used here a multiple version of Cohen's RIPPER 
propositional learner. This tool, entitled 'RippMi' induces 
rules given bags of instances. The REMO algorithm was 
also involved to generate bags of instances given a first-
order description of molecules. To achieve this 
representation shift, the user was asked by REMO to 
provided as additional input data a description of the 
intrinsic structure of the examples. In our case, we 
specified that each example has a main object - a molecule 
– associated with two attributes, and that this object 
contains smaller ones - atoms - associated with their own 
set of attributes. 
Given that information, REMO will generate a fist MPP 
representation, launch the learner, and iteratively shift 
towards more complex representation, until the set of rules 
becomes acceptable. 
Such representation will be denoted by the different parts 
contained in the instances. For example, 
{molecule+2atom} indicates that for a given molecule, 
each instance contains the two attributes relative to that 
molecule, as well as the attributes of 2 atoms. {atom} 
denotes a representation wherein one instance corresponds 
to one atom. Table 1 displays the results obtained by a 10-
fold crossvalidation, using various MPP-representations.  
 
 
 
  
 
 
 
 
 
 
 
 
Surprisingly, the best accuracy was obtained using the 
near-simplest representation : {molecule+atom}. An 
example of rules generated by RippMi with this 
representation is: 
 
 
 
 
 
 
 
 
 
 
 

Representation Accuracy 
{atom} 0.75 (0.04) 
{2 atoms} 0.78 (0.02) 
{molecule+atom} 0.88 (0.02) 
{molecule+2atoms} 0.88 (0.02) 

 
Table1: RippMi’s accuracy using various representation of 
dataset containing 188 compounds. 

(covers 18 examples) 
active(M):- logp(M,L), L >= 3.37, 

lumo(M,Lu), Lu <= -1.361, 
atm(M,A,Elt,Typ,PCharge), 
PCharge <= -0.376. 

 
(covers 46 examples) 
active(M) :-  

atm(M,A,Elt,Typ,PCharge), 
member(Typ,[27,51,31]), 
PCharge <= -0.085. 

 

COVERMULTI(G,objeti ) ←∃j | COVER(G,instancei,j ) 

COVERAGEmulti(G)= | {objeti ; COVERMULTI(G,objeti )} | 



With such a representation, given some molecular 
properties, it becomes possible to determin whether a 
molecule is or not mutagenic only by looking at its atoms 
one by one. Nevertheless, we cannot state from these 
results that a single atom is responsible for the 
mutagenecity of a molecule. In fact, the atomic attributes 
most often used by RippMi during induction do not depend 
only on the atom they belong too : the partial charge, for 
example, can only be computed with the knowledge of the 
neighboring atoms; the type of the atom also depends on 
its environment. It is, on the other hand, highly probable 
that one of the atoms responsible for mutagenecity of a 
molecule will be covered by a rule. It is therefore 
conceivable to discover an entire group of atom 
responsible for mutagenecity, starting from a single atom 
of this group. One of our research goals would be, 
assuming the previous hypothesis, to investigate more 
complex representation (i.e. involving several atoms) 
leading to simpler theories. 
 

Comparing results with other learning systems 
 
We have performed experiments to compare our system 
with Progol and a few others, using the same dataset of 
188 compounds and the same background knowledge. The 
results are summarized in the table below. 
 
   
 
  Table 2: accuracy using k-fold validation 
 
Despite the fact that RippMi uses a greedy-search 
algorithm, its shows quite competitive in terms of 
predictive accuracy, with respect to other learners. In 
addition, it is much faster – only 2.6 seconds to generate 
rules with {molecule+atom} representation - probably 
because of its simplicity, compared to first-order learners. 
The results obtained on this real-world problem shows that 
the multi-instance paradigm, sort of “missing link” 
between propositional and first order representation, is 
very promising for a wide range of future biochemical 
learning problems.  

Conclusion 

 
The problem of supervised multiple-instance learning is a 
recent learning problem which has excited interest in the 
learning community. The problem is encountered in 
contexts where an object may have several alternative 
vectors to describe its different possible configurations. 
This paper has shown that the problem is subsumed by the 
multiple-part problem, which can play a key role in 
relation-learning algorithms and in inductive logic 
programming (Zucker et al., 1998). Multiple-instance 
learning were first applied to the prediction of drug 
activity. Very recently, Maron et Lozano-Pérez have 

proposed a framework called Diverse Density for solving 
multiple-instance problems (Maron et Lozano-Pérez 1998). 
Solving multiple-problems using classical algorithms 
raises important subtle issues that have been analyzed here. 
The paper has shown how these problems can be solved 
using multiple-concept mono-instance learning algorithms. 
Extensions to classical algorithms have been proposed to 
solve these problems by learning decision trees and 
decision rules. They are based on two notions: multiple-
instance entropy and multiple-instance coverage. Thanks 
to these modifications it has been possible to implement 
the programs ID3-M, AQ-M, C4.5-M, CN2-M, 
CHARADE-M, and RippMi (the Java implementations of 
these programs will be available by request to the authors). 
Our practical experiments on the mutagenesis problem 
show that our approach performs well, and that multi-
instance algorithms can handle numeric as well as 
symbolic data. 
Many questions remain unanswered concerning multiple-
problem solving and these questions can all be followed 
up. As far as can be ascertained, no theoretical research has 
yet been done on MPP problem learnability but it is highly 
likely that it can be reduced to a multiple-instance problem 
in which noise is injected. As for practical research, many 
approaches need to be tried and neural algorithms still 
have to be found for multiple-instance and multiple-part 
problems.   
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