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Abstract. In many machine learning applications that deal with se-
quences, there is a need for learning algorithms that can effectively utilize
the hierarchical grouping of words. We introduce Word Taxonomy guided
Naive Bayes Learner for the Multinomial Event Model (WTNBL-MN)
that exploits word taxonomy to generate compact classifiers, and Word
Taxonomy Learner (WTL) for automated construction of word taxon-
omy from sequence data. WTNBL-MN is a generalization of the Naive
Bayes learner for the Multinomial Event Model for learning classifiers
from data using word taxonomy. WTL uses hierarchical agglomerative
clustering to cluster words based on the distribution of class labels that
co-occur with the words. Our experimental results on protein localiza-
tion sequences and Reuters text show that the proposed algorithms can
generate Naive Bayes classifiers that are more compact and often more
accurate than those produced by standard Naive Bayes learner for the
Multinomial Model.

1 Introduction

In machine learning, one of the important goals is to induce comprehensible, yet
accurate and robust classifiers [1]. In classical inductive learning for text classi-
fication, each document is represented as a bag of words. That is, one instance
is an ordered tuple of word frequencies or binary values to denote the presence
of words. However, these words can be grouped together to reflect assumed or
actual similarities among the words in the domain or in the context of a specific
application. Such a hierarchical grouping of words yields word taxonomy (WT).
Figure 1 is an example of word taxonomy of “Science” made by human.

Taxonomies are very common and useful in many applications. For example,
Gene Ontology Consortium has developed hierarchical taxonomies for describing
various aspects of macromolecular sequences, structures, and functions [2]. For
intrusion detection, Undercoffer et al.[3] established a hierarchical taxonomy of
features observable by the target of an attack. Various ontologies have been
developed in several fields as part of Semantic Web related efforts [4].
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Fig. 1. Illustrative taxonomy of ‘Science’ by human

Word taxonomies present the possibility of learning classification rules that
are simpler and easier-to-understand when the terms in the rules are expressed
in terms of abstract values. Kohavi and Provost [5] pointed the need of incorpo-
rating hierarchically structured background knowledge. Abstraction of similar
concepts by the means of attribute value taxonomy (AVT) has been shown
to be useful in generating concise and accurate classifiers [6, 7, 8]. Zhang and
Honavar [8] presented AVT-NBL, an algorithm that exploits AVTs to generate
Naive Bayes Classifiers that are more compact and often more accurate than
classifiers that do not use AVTs. The algorithm potentially performs regulariza-
tion to minimize over-fitting from learning with relatively small data sets.

Against this background, we introduce word taxonomy guided Naive Bayes
learner for the multinomial event model (WTNBL-MN). WTNBL-MN is a word
taxonomy based generalization of the standard Naive Bayes learning algorithm
for the multinomial model.

Because word taxonomy is not available in many domains, there is a need for
automated construction of word taxonomy. Hence, we describe a word taxonomy
learner (WTL) that automatically generates word taxonomy from sequence data
by clustering of words based on their class conditional distribution.

To evaluate our algorithms, we conducted experiments using two classifica-
tion tasks: (a) assigning Reuters newswire articles to categories, (b) and classi-
fying protein sequences in terms of their localization. We used Word Taxonomy
Learner (WTL) to generate word taxonomy from the training data. The gener-
ated word taxonomy was provided to WTNBL-MN to learn concise Naive Bayes
classifiers that used abstract words of word taxonomy.

The rest of this paper is organized as follows: Section 2 introduces the
WTNBL-MN algorithm; Section 3 presents WTL algorithm; Section 4 describes
our experimental results and Section 5 concludes with summary and discussion.

2 Word Taxonomy Guided Naive Bayes Learner for the
Multinomial Event Model (WTNBL-MN)

We start with definitions of preliminary concepts necessary to describe our al-
gorithms. We then precisely define the problem as learning classifier from word
taxonomy and sequence data.
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2.1 Word Taxonomy

Let Σ = {w1, w2, . . ., wN} be a dictionary of words, C = {c1, c2, . . ., cM} a finite
set of mutually disjoint class labels, and fi,j denote an integer frequency of
word wi in a sequence dj . Then, sequence dj is represented as an instance Ij ,
a frequency vector < fi,j > of wi, and each sequence belongs to a class label
in C. Finally, a data set D is represented as a collection of instance and their
associated class label {(Ij , cj)}.

Let TΣ be a word taxonomy defined over the possible words of Σ. Let
Nodes(TΣ) denote the set of all values in TΣ and Root(TΣ) denote the root
of TΣ . We represent the set of leaves of TΣ as Leaves(TΣ) ⊆ Σ. The internal
nodes of the tree correspond to abstract values of Σ.

After Haussler [9], we define a cut γ through a word taxonomy TΣ as follows.

Definition 1 (Cut). A cut γ is a subset of nodes in word taxonomy TΣ satis-
fying the following two properties:

1. For any leaf l ∈ Leaves(TΣ), either l ∈ γ or l is a descendant of a node in
TΣ.

2. For any two nodes f,g ∈ γ, f is neither a descendant not an ancestor of g.

A cut γ induces a partition of words in TΣ . For example, in figure 1, a cut
{ComputerScience, Physics,Mathematics} defines a partition over the values
of an abstract word ‘Science’.

Definition 2 (Refinement). We say that a cut γ̂ is a refinement of a cut γ if
γ̂ is obtained by replacing at least one node v ∈ γ by its descendants. Conversely,
γ is an abstract of γ̂

Figure 2 illustrates a refinement process in word taxonomy TΣ . The cut
γ = {A,B} is been refined to γ̂ = {A1, A2, B} by replacing A with A1 and A2.
Thus, corresponding hypothesis hγ̂ is a refinement of hγ .

Definition 3 (Instance Space). Any choice of γ defines an input space Iγ .
If there is a node ∈ γ and /∈ Leaves(TΣ), the induced input space Iγ is an
abstraction of the original input space I .

γ

γ̂

∑
T

A B

A

A
2

Fig. 2. Illustration of Cut Refinement: The cut γ = {A, B} is been refined to γ̂ =
{A1, A2, B} by replacing A with A1 and A2
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With a data set D, word taxonomy TΣ and corresponding valid cuts, we can
extend our definition of instance space to include instance spaces induced from
different levels of abstraction of the original input space. Thus, word taxonomy
guided learning algorithm work on this induced input space.

2.2 Event Models for Naive Bayes Sequence Classification

WTNBL-MN algorithm generates a Naive Bayes Classifier for the multinomial
model. Before we describe WTNBL-MN algorithm, we briefly summarize event
models for Naive Bayes classification of sequence data [10, 11].

Multi-variate Bernoulli Model. In a multi-variate Bernoulli model, a se-
quence dj is represented as an instance Ij by a vector of binary values bi,j ∈ {0, 1}
where bi,j denotes the presence or absence of a word wi in the sequence. The
number of occurrence of word is not preserved in the vector. The probability of
sequence dj given its class cj is as follows:

P (dj |cj) =
|Σ|∏

i=1

(bi,jpi,j + (1 − bi,j)(1 − pi,j)) (1)

Multinomial Model. In a multinomial model, a sequence is represented as
a vector of word occurrence frequencies fi,j . The probability of an instance Ij

given its class cj is defined as follows:

P (dj |cj) =

⎧
⎨

⎩

(∑|Σ|
i fi,j
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i (fi,j)!

⎫
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The term
{��|Σ|

i fi,j

�
!

�|Σ|
i (fi,j)!

}
represents the number of possible combinations of

words for the instance Ij .
In equation 2, pi,j is basically calculated as follows:

pi,j =
Count(cj , wi)

Count(cj)

Count(cj , wi) is the number of times word wi appears in all the instances that
have a class label cj , and Count(cj) is the total number of words in a particular
class label cj . With Laplacian smoothing, pi,j will be as follows:

pi,j =
1 + Count(cj , wi)
|Σ| + Count(cj)

2.3 WTNBL-MN Algorithm

The problem of learning classifiers from a word taxonomy and sequence data is
a natural generalization of the problem of learning classifiers from the sequence
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data. Original data set D is a collection of labeled instances < Ij , cj > where I ∈
I . A classifier is a hypothesis in the form of function h : I → C, whose domain
is the instance space I and whose range is the set of class C. A hypothesis space
H is a set of hypotheses that can be represented in some hypothesis language
or by a parameterized family of functions. Then, the task of learning classifiers
from the data set D is induce a hypothesis h ∈ H that satisfies given criteria.

Hence, the problem of learning classifiers from word taxonomy and data can
be described as follows: Given word taxonomy TΣ over words Σ and a data set
D, the aim is induce a classifier hγ∗ : Iγ∗ → C where γ∗ is a cut that maximizes
given criteria. Of interest in this paper is that the resulting hypothesis space Hγ̂

of a chosen cut γ̂ is efficient in searching for both concise and accurate hypothesis.
Word taxonomy guided Naive Bayes Learner is composed of two major com-

ponents: (a) estimation of parameters of Naive Bayes classifiers based on a cut,
(b) and a criterion for refining a cut.

Aggregation of Class Conditional Frequency Counts. We can estimate
the relevant parameters of a Naive Bayes classifier efficiently by aggregating class
conditional frequency counts. For a particular node of a given cut, parameters
of the node can be estimated by summing up the class conditional frequency
counts of its children [8].

Given word taxonomy TΣ , we can define a tree of class conditional frequency
counts Tf such that there is one-to-one correspondence between the nodes of
word taxonomy TΣ and the nodes of the corresponding Tf . The class conditional
frequency counts associated with a non leaf node of Tf is the aggregation of the
corresponding class conditional frequency counts associated with its children.
Because a cut through word taxonomy corresponds a partition of the set of words,
the corresponding cut through Tf specifies a valid class conditional probability
table for words. Therefore, to estimate each nodes of Tf , we simply estimate the
class conditional frequency counts of primitive words in Σ, which corresponds
to the leaves of Tf . Then we aggregate them recursively to calculate the class
conditional frequency counts associated with their parent node.
Conditional Minimum Description Length of Naive Bayes Classifier.
We use conditional minimum description length (CMDL) [12] score to grade the
refinement of Naive Bayes classifier for the multinomial model.

Let vj
i be the ith attribute value of jth instance dj ∈ D, and cj ∈ C a class

label associated with dj . Then, the conditional log likelihood of the hypothesis
B given data D is

CLL(B|D) = |D|
|D|∑

j

log{PB(cj |dj)} = |D|
|D|∑

j

log

{
PB(cj)PB(dj |cj)∑|C|
ck

PB(ck)PB(dj |ck)

}

(3)
For Naive Bayes classifier, this score can be efficiently calculated [8].

CLL(B|D) = |D|
|D|∑

j

log

{
P (cj)

∏
i{P (vj

i |cj)}
∑|C|

ck
P (ck)

∏
i{P (vj

i |ck)}

}
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And the corresponding conditional minimum description length (CMDL)
score is defined as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number
of entries in conditional probability tables (CPT) of B.

In case of a Naive Bayes classifier with multi-variate Bernoulli model, size(B)
is defined as

size(B) = |C| + |C|
|v|∑

i=1

|vi|

where |C| is the number of class labels, |v| is the number of attributes, and |vi|
is the number of attribute values for an attribute vi.

Conditional Minimum Description Length of a Naive Bayes Classifier
for the Multinomial Model. Combining the equations 2 and 3, we can obtain
the conditional log likelihood of the classifier B given data D under the Naive
Bayes multinomial model.
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(4)

where, |D| is the number of instances, cj ∈ C is a class label for instance dj ∈ D,
fi,j is a integer frequency of word wi ∈ Σ in instance dj , and pi,j is the estimated
probability that word wi occurred in the instances associated to class label j.

Conditional Minimum Description Length (CMDL) of a Naive Bayes Classi-
fier for the multinomial model is defined as follows:

CMDL(B|D) = −CLL(B|D) +
{

log |D|
2

}
size(B)

where, size(B) is a size of the hypothesis B which corresponds to the number
of entries in conditional probability tables (CPT) of B.

Therefore, size(B) is estimated as

size(B) = |C| + |C||Σ| (5)

where |C| is the number of class labels, |Σ| is the number of words.

Computation of CMDL Score. Because each word is assumed to be inde-
pendent of others given the class, the search for the word taxonomy guided Naive
Bayes classifier can be performed efficiently by optimizing the CMDL criterion
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WTNBL-MN:
begin

1. Input : data set D and word taxonomy TΣ

2. Initialize cut γ to the root of TΣ

3. Estimate probabilities that specify the hypothesis hγ

4. Repeat until no change in cut γ
5. γ̄ ← γ
6. For each node v ∈ γ :
7. Generate a refinement γv of γ by replacing v with its children.
8. Construct corresponding hypothesis hγv .
9. If CMDL(hγv |D) < CMDL(hγ̄ |D), then replace γ̄ with γv.

10. If γ �= γ̄ then γ ← γ̄
11. Output : hγ

end.

Fig. 3. Pseudo-code of Word Taxonomy Guided Naive Bayes Learner for the Multino-
mial Model(WTNBL-MN)

independently for each word. Thus, the resulting hypothesis h intuitively trades
off the complexity in terms of the number of parameters against the accuracy
of classification. The algorithm terminates when none of candidate refinements
of the classifier yield statistically significant improvement in the CMDL score.
Figure 3 outlines the algorithm.

3 Learning a Word Taxonomy from Sequence Data

We describe word taxonomy learner (WTL), a simple algorithm for automated
construction of word taxonomy from sequence data.

3.1 Problem Definition

The problem of learning a word taxonomy from sequence data can be stated
as follows: Given a data set represented as a set of instances where an instance
is a frequency vector < fi, c > of a word wi ∈ Σ and associated class label c,
and a similarity measure among the words, output word taxonomy TΣ such that
it corresponds to a hierarchical grouping of words in Σ based on the specified
similarity measure.

3.2 Algorithm

We use hierarchical agglomerative clustering (HAC) of words based on the dis-
tribution of class labels that co-occur with them. Let DM(P (x)||Q(x)) denote a
measure of pairwise divergence between two probability distributions P and Q
of the random variable x.
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WTL:
begin

1. Input : data set D
2. For each word wi ∈ Σ :
3. For each class ck ∈ C :
4. Estimate the probability distribution p (ck|wi)
5. Let P (C|wi) = {p (c1|wi) , . . ., p (ck|wi)} be the class distribution associ-

ated with the word wi.
6. γ ← Σ;
7. Initialize TΣ with nodes in γ.
8. Iterate until |γ| = 1:
9. In γ, find (x, y) = argmin {DM (P (C|x) ||P (C|y))}

10. Merge x and y (x �= y) to create a new value z.
11. Calculate probability distribution P (C|z).
12. γ̂ ← γ ∪ {z} \ {x, y}.
13. Update TΣ by adding nodes z as a parent of x and y.
14. γ ← γ̂.
15. Output : TΣ

end.

Fig. 4. Pseudo-code of Word Taxonomy Learner (WTL)

We use a pairwise measure of divergence between the distribution of the
class labels associated with the corresponding words as a measure of dissim-
ilarity between the words. The lower the divergence between the class distri-
bution between two words, the greater is their similarity. The choice of this
measure of dissimilarity is motivated by the intended use of word taxonomy
for WTNBL-MN algorithm to generate concise and accurate classifiers. If two
words are indistinguishable from each other with respect to their class distri-
bution, they will provide statistically similar information for classification of
instance.

The pseudocode for the Word Taxonomy Learner (WTL) is shown in figure 4.
The basic idea is to construct a taxonomy TΣ by starting with the primitive
words in Σ as the leaves of TΣ and recursively add nodes to TΣ one at a time by
merging two existing nodes. To aid this process, the algorithm maintains a cut
γ through the taxonomy TΣ , updating the cut γ as new nodes are added to TΣ .
At each step, the two words to be grouped together to obtain an abstract word
to be added to TΣ are selected from γ based on the divergence between the class
distributions associated with the corresponding words. That is, a pair of words
in γ are merged if they have more similar class distributions than any other pair
of words in γ. This process terminates when the cut γ contains a single word
which corresponds to the root of TΣ . The resulting TΣ will have (2|Σ| − 1) nodes
when the algorithm terminates.
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3.3 Dissimilarity Measure

Several ways of measuring dissimilarity between two probability distributions
have been studied in the literature [13]. We have experimented with thirteen dif-
ferent divergence measures. In our experiments, most of them resulted in similar
performance on classification tasks. Hence, we focus on the results obtained by
Jensen-Shannon divergence measure in the discussion that follows [14].

Jensen Shannon Divergence. is a weighted information gain that is reflexive,
symmetric and bounded. Pairwise version of Jensen-Shannon divergence is given
by

I (P ||Q) =
1
2

[∑
pilog

(
2pi

pi + qi

)
+

∑
qilog

(
2qi

pi + qi

)]

4 Experiments

The results of experiments described in this section provide evidence that
WTNBL-MN coupled with WTL usually generate more concise and often more
accurate classifiers than those of the Naive Bayes classifiers for the multinomial
model. We conducted experiments with two sequence classification tasks; text
(word sequence) classification and proteins (amino acid sequence) classification.
In each case, a word taxonomy is generated using WTL and a classifier is con-
structed using WTNBL-MN on the resulting WT and sequence data.

4.1 Text Classification

Reuters 21587 distribution 1.0 data set1 consists of 12902 newswire articles in
135 overlapping topic categories.

We build binary classifiers for top ten most populous categories on text clas-
sification [15, 16, 10]. In our experiment, stop words were not eliminated, and
title words were not distinguished with body words. We selected top 300 fea-
tures based on mutual information with class labels. The mutual information
MI(x, c) between a feature x and a category c is defined as:

MI(x, c) =
x∑

{
c∑ {

P (x, c)log
P (x, c)

P (x)P (c)

}}

We followed the ModApte split [17] in which 9603 stories are used for building
classifiers and 3299 stories to test the accuracy of the resulting model. We report
the break even points, the average of precision and recall when the difference
between the two is minimum. Precision and recall of text categorization are
defined as:

1 This collection is publicly available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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Precision =
|detected documents in the category (true positives)|

|documents in the category (true positives + false negatives)|

Recall =
|detected documents in the category (true positives)|
|detected documents (true positives + false positives)|

Table 1 shows the break even point of precision and recall as well as the
size of the classifier (from the equation 5) for the ten most frequent categories.
WTNBL-MN usually shows similar performance in terms of break even perfor-
mance except in the case of “corn” category, while the classifiers generated by
WTNBL-MN have smaller size than those generated by the Naive Bayes Learner
(NBL).

Table 1. Break even point of 10 Largest Categories

Data NBL-MN WTNBL-MN # of documents
breakeven size breakeven size train test

earn 94.94 602 94.57 348 2877 1087
acq 89.43 602 89.43 472 1650 719

money-fx 64.80 602 65.36 346 538 179
grain 74.50 602 77.85 198 433 149
crude 79.89 602 76.72 182 389 189
trade 59.83 602 47.01 208 369 118

interest 61.07 602 59.54 366 347 131
ship 82.02 602 82.02 348 197 89

wheat 57.75 602 53.52 226 212 71
corn 57.14 602 21.43 106 182 56
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Fig. 5. Precision-Recall Curves of “Grain” Category
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Figure 5 shows Precision-Recall curve [18] for the “grain” category. It can be
seen that WTNBL-MN generates a Naive Bayes classifier that is more compact
than, but has performance comparable to that of the classifier generated from
Naive Bayes learner.

WTNBL-MN did not show good performance for the “corn” category. This
may be explained by the fact that conditional minimum description length trades
off the accuracy of the model against its complexity, which may not necessarily
optimize precision & recall for a particular class As a consequence, WTNBL-MN
may terminate refinement of the classifier prematurely for class labels with low
support, i.e. when the data set is imbalanced.

4.2 Protein Sequence Classification

We applied WTNBL-MN algorithm on two protein data sets with a view to
identifying their localization [19].

The first data set is 997 prokaryotic protein sequences derived from SWISS-
PROT data base [20]. This data set includes proteins from three different sub-
cellular locations: cytoplasmic (688 proteins), periplasmic (202 proteins), and
extracellular (107 proteins).

The second data set is 2427 eukaryotic protein sequences derived from SWISS-
PROT data base [20]. This data set includes proteins from the following four
different subcellular locations: nuclear (1097 proteins), cytoplasmic (684 pro-
teins), mitochondrial (321 proteins), extracellular (325 proteins).

For these data sets2, we conducted ten-fold cross validation. To measure the
performance of the following performance measures [21] are applied and the
results for the data set are reported:

Correlation coefficient =
TP × TN − FP × FN√

(TP+FN)(TP+FP)(TN+FP)(TN+FN)

Accuracy =
TP + TN

TP+TN+FP+FN

Sensitivity+ =
TP

TP+FN

Specificity+ =
TP

TP+FP
where, TP is the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of false negatives.

Figure 6 is amino acid taxonomy constructed for the prokaryotic protein
sequences. Table 2 shows the results in terms of the performance measures for the
two protein sequences. For both data sets, the classifier generated by WTNBL is
more concise and shows more accurate performance than the classifier generated
by the Naive Bayes Learner (NBL) in terms of the measures reported.

2 These datasets are available to download at
http://www.doe-mbi.ucla.edu/˜astrid/astrid.html.
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subcell2prodata
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Fig. 6. Taxonomy from Prokaryotic Protein Localization Sequences constructed by
WTL

Table 2. Results on Protein Localization Sequences (abbrev.: C - cytoplasmic, E -
extracellular, P - peripalsmic, N - nuclear, M - mitochondrial)

Method Prokaryotic Eukaryotic
C E P N E M C

NBL-MN
correlation 71.96 70.57 51.31 61.00 36.83 25.13 44.05
coefficient
accuracy 88.26 93.58 81.85 80.72 83.11 71.69 71.41

specificity+ 89.60 65.93 53.85 82.06 40.23 25.85 49.55
sensitivity+ 93.90 83.18 72.77 73.38 53.85 61.06 81.29

size 42 42 42 46 46 46 46
WTNBL-MN
correlation 72.43 69.31 51.53 60.82 38.21 25.48 43.46
coefficient
accuracy 88.47 93.18 81.85 80.63 84.01 72.35 71.24

specificity+ 89.63 64.03 53.82 81.70 42.30 26.29 49.37
sensitivity+ 94.19 83.18 73.27 73.66 53.23 60.44 80.56

size 20 20 40 24 36 34 32

5 Summary and Related Work

5.1 Summary

We have presented word taxonomy guided Naive Bayes Learning algorithm for
the multinomial event model (WTNBL-MN). We also described WTL, an algo-
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rithm for automated generation of word taxonomy for sequence data. WTNBL-
MN is a generalization of the Naive Bayes learner for the multinomial event
model for learning classifiers from data using word taxonomy. WTL is a hierarchi-
cal agglomerative clustering algorithm to cluster words into taxonomy based on
the distribution of class labels that co-occur with the words. Experimental results
on protein sequence and Reuters text show that the proposed algorithms can gen-
erate Naive Bayes classifiers that are more compact and often more accurate than
those produced by standard Naive Bayes learner for the Multinomial Model.

5.2 Related Work

Several groups have explored the problem of learning classifiers from attribute
value taxonomies (AVT) or tree structured attributes: Zhang and Honavar [6, 8]
developed decision tree learner and Naive Bayes learner regularized over at-
tribute value taxonomy. These works were primarily focused on attribute value
taxonomy for multi-variate data sets. Taylor et al. [22] and Hendler et al. [23] de-
scribed the use of taxonomy in rule learning. Han and Fu [24] proposed a method
for exploiting hierarchically structured background knowledge for learning asso-
ciation rules. desJardins et al. [25] suggested the use of Abstraction-Based-Search
(ABS) to learning Bayesian networks with compact structure.

Gibson and Kleinberg [26] introduced STIRR, an iterative algorithm based
on non-linear dynamic systems for clustering categorical attributes. Ganti et.
al. [27] designed CACTUS, an algorithm that uses intra-attribute summaries to
cluster attribute values. Both of them did not make taxonomies and use the
generated for improving classification tasks.

Pereira et. al. [28] described distributional clustering for grouping words based
on class distributions associated with the words in text classification. Slonim
and Tishby [14] described a technique (called the agglomerative information
bottleneck method) which extended the distributional clustering approach de-
scribed by Pereira et al. [28], using Jensen-Shannon divergence for measuring
distance between document class distributions associated with words and ap-
plied it to a text classification task. Baker and McCallum [29] reported im-
proved performance on text classification using a distributional clustering with
a Jensen-Shannon divergence measure.

To the best of our knowledge, the results presented in this paper are the first
of these kinds with regards to exploitation of word taxonomies in the generation
of compact yet accurate classifiers for sequence classification.

5.3 Future Work

Some promising directions for future work include the following:

– Application of the WTNBL-MN algorithm to up-to-date text corpora [30,
31].

– Enhancement of the WTNBL-MN and WTL algorithms for learning and
exploiting hierarchical ontologies based on part-whole and other relations as
opposed to ISA relations.
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– Development of other measures for model selection rather than CMDL for
cut refinement to accommodate the various application-specific needs.
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