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Definition of almost periodic functions

Definition

A continuous complex-valued function f on R is called almost
periodic if for every € > 0O there exists an | > 0 such that every
interval of length | contains at least one point 7 for which

suplf (x4 7) — f(X)| < e.
X

7 is called an almost period of f relative to e.
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Definition of almost periodic functions

Definition

A continuous complex-valued function f on R is called almost
periodic if for every € > 0O there exists an | > 0 such that every
interval of length | contains at least one point 7 for which

suplf (x4 7) — f(X)| < e.
X

7 is called an almost period of f relative to e.
We denote by AP the set of all almost periodic functions on R.
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Almost perdioic functions

Capturing the AP-norm
Our results

@ AP : a non-separable incomplete inner product space
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The inner product norm

@ AP : a non-separable incomplete inner product space
f, =i f(x)0
(f.g)ap:= Jim — / X)g(x

@ {€¢}¢cr: acomplete orthonormal basis in AP.
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The inner product norm

@ AP : a non-separable incomplete inner product space
f, =i f(x)0
(f.g)ap:= Jim — / X)g(x

@ {€¢}¢cr: acomplete orthonormal basis in AP.
f(x) ~ S aA)e™ a\) :=F(\) := (f, e )ap.
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The inner product norm

@ AP : a non-separable incomplete inner product space
f, =i f(x)0
(f.g)ap:= Jim — / X)g(x

@ {€¢}¢cr: acomplete orthonormal basis in AP.

f(x) ~ S aA)e™ a\) :=F(\) := (f, e )ap.
@ o(f):={\ € R|a()\) # 0} countable set.
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The inner product norm

@ AP : a non-separable incomplete inner product space
(f,9)ap Ignooﬁ / f(x)9(x

@ {€¢}¢cr: acomplete orthonormal basis in AP.

f(x) ~ S aA)e™ a\) :=F(\) := (f, e )ap.
@ o(f):={\ € R|a()\) # 0} countable set.

® [[f[|Zp = Xreoqr) AN
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The averaging process

A wavelet system:

a €N, ¥ C Ly(R) finite,
X(U, @) = {\/Jz/}j,k DYk = a_jz/J(a_j -—=k), j,k e Z}.
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The averaging process

A wavelet system:

a €N, ¥ C Ly(R) finite,
X(¥, @) == {Vaighjx : Yk = a (e - —k), j, ke Z}.

Averaging with wavelet systems

Nlinoc 2N kz Z 1/}1 k

=—N e
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The averaging process

A Gabor system:

to,wo > 0, K:=1Z, L :=wWZ, ¥V C L2(|R) finite,
X(W, to, W) = {ths := (- —K)E'™0 : keK, leL, ¢ € U}
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The averaging process

A Gabor system:

to,wo > 0, K:=1Z, L :=wWZ, ¥V C L2(|R) finite,
X(W, to, W) = {ths := (- —K)E'™0 : keK, leL, ¢ € U}

Averaging with Gabor systems

Nto DD K

keK(N) peT
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Earlier results using wavelets

Assumptions:
@ () = SUpg Yjez [P(aIN)P (l (A — 27K))
@ A= infyer Y,z ‘J(OM)]Z o (TRIT(—K)Y2 > 0
Q@ Bi=supcp Kz [0 + Liso (DK (k)Y < 0

, kezZ.
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Earlier results using wavelets

Assumptions:
@ () = SUpg Yjez [P(aIN)P (l (A — 27K))
@ A= infyer Y,z ‘&(au)]z o (TRIT(—K)Y2 > 0
Q@ Bi=supcp Kz [0 + Liso (DK (k)Y < 0

, kezZ.

Theorem (F. Galindo, 2004 2)

For f € APwith f({0}) =0,

N

. _ 1 -

Allf[[Zp < Z,JE”OO NIl D P < BlIf|[Ze-
jez k=—N
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Earlier results using Gabor systems

Assumptions:
@ ¢ is bounded and ¢(t) = O(3}) as t — +oo.

© I(K) i= SUP, Lynez [F(A ~ muo)5(A — 22 — mwg) |, ke Z
@ A:=infa Y ez [P(A — Mup)2 = Sy 710 (T (—K)Z > 0
® B:=5up, Yz [D(A — Mub)[2 + Sy (TROT(—K) Y2 < o0
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Earlier results using Gabor systems

Assumptions:
@ ¢ is bounded and ¢(t) = O(3}) as t — +oo.

0 T(K) = SUp, ez ’@Z(A — mup)p(A — 2% —mw)|, ke z
® A:=infy Ypez [N — M) 2 — Syez0 (COT (k)2 > 0
© Bi=sup, Y ez [P — M) |2+ Y700 (N(KT(—K) 2 < o0

Theorem (F. Galindo, 2004 2)

Aliflize < Jim o

N
ZZ kP < BlIf[[ze
I=—Nkez

for every f € AP.
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L.(R)-wavelet respresentations

Definition: Frames
X C L2(R) is a frame iff there exist A, B > 0 such that

AlIf[IZ < Y 107 < B2, ¥ € La(R).
XeX
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L.(R)-wavelet respresentations

Definition: Frames
X C L2(R) is a frame iff there exist A, B > 0 such that

AlIf[IZ < Y 107 < B2, ¥ € La(R).
XeX

Fiberization of wavelets: For an wavelet system X := X(¥, «),

G(\) = ( SN ddd(r- K)o (ad (A — |))) -
(kD e(2rz)?

j=r(A=X\) YEW

G =Gy :R—R: A |G
G =Gy :R—R: A~ |G
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L.(R)-wavelet respresentations

Fiberization of wavelets: For an wavelet system X := X(¥, «),

(Z 3" B (A - Kl (A - ))) -
(k) E(2nZ)2

j=k(A—\) YEW

G =Gx:R—R: A Hé()\)H
G =G :R—>R: A |G

Theorem, R-Shen, JFA 1997

X is a fundamental frame for L(R)
if and only if G*, G*~ € Loo(R).
Furthermore, the frame bounds of X are
119"/ (ry @nd 1/[|G [ (r)
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Main result on wavelets

Assumptions:

@ X =X(¥,a) C L1i(R): a wavelet system

@ > V(ed ) (ad (- +7)) is continuous, where
kA :=inf{j € Z : A\ € 2nZZ}, v € Ujez2nZ/dd, p € T
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Main result on wavelets

Assumptions:
@ X =X(¥,a) C L1i(R): a wavelet system
@ > $(al)(al(- + ) is continuous, where
k(\) :==inf{j € Z : ol\ € 2nZ}, v € Ujez2nZ/od, p € ¥

Theorem, Kim-R, CA 200x

X'is an Ly(IR) frame with frame bounds A, B iff for any f € AP with
f(0) =0,

A||”|AP<Z lim 2N Z Z| (f, 401> < B|f 1z

k=—N )T

(Note: the sharpest frame bounds are also the sharpest AP bounds).
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L.(R)-Gabor representations

For a Gabor system X := X(¥, tp, Wo),

Zzzp A—d=Dd\A—d -1

0 pew leL (A eD?

G =Gx:R—R: A Hé()\)H
G =G :R—>R: A~ |G
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L.(R)-Gabor representations

For a Gabor system X := X(, tg, Wp),
( SN - d—I@(/\—d’—I)) .
Yew leL (d.d)ep?

G =Gx:R—R: A Hé()\)H
G =G :R—>R: A |G

Theorem, R-Shen, DMJ, 1997

X'is a fundamental frame for Lo(RR)
if and only if G*,G*~ € Loo(R).
Furthermore, the frame bounds of X are ||G*||,_(r) and
VG Lo (r)-
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Main result on Gabor

Assumptions:
@ X = X(¥,1tp,Wo) C L1(R) a Gabor system
@ D:=2nZ/ty, L:=WZ, ¢ € V¥,
> W=Dy —d—1)
leL
is continuous
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Main result on Gabor

Assumptions:
@ X = X(¥,1tp,Wo) C L1(R) a Gabor system
@ D:=2nZ/ty, L:=WZ, ¢ € V¥,

S O Dd(-—d 1)

leL
is continuous

Theorem, Kim-R, CA, 200x

Xis an Ly(R) frame with frame bounds A, B iff for any f € AP,

AHfo\PgZNle —— Z > v ? < Bf |2
leL

keK (N) el

where K(N) := {ntp e K : —N < n < N} (A, B: optimal).
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The laplacian (CP) pyramid: |

Laplacian Pyramids (Burt and Adelson, 1983)

Yo—S Lya1—C% y, L C yin—C Ly
D D D DJ
do d_; d_z d_ji1

Definition of the detail map

D=1-PC

Amos Ron Wavelet representations
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SO |

do d_1 ds e d i




Pyramidal representations and wavelets

Part I: Time-freq. representations of almost-peridoic functions :
L s Introduction to localness and performance
Part II: L-CAMP — Efficient wavelet represent’n in high D X o .
Part Ill: L-CAMP representation based on samplin L2 RIS YED Gl CAP mEliial s
' P ping L-CAMP: The algorithms & performance analysis

The laplacian (CP) pyramid: |

Laplacian Pyramids (Burt and Adelson, 1983)

Yo—S Ly % y,C % yin_C y,
of o] o] o
do d, d_, cee d,j+1

(V)2 o C C¥ sit:
Yi-1=Cy = (hexyj);, Vi

C is Compression

y; is then predicted fromy;_; by
Yi ~ PY-1:= 27 (M * (yj-11)) -
P is Prediction

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions

Part Ill: L-CAMP representation based on sampling

Pyramidal representations and wavelets

: L s Introduction to localness and performance
Part II: L-CAMP — Efficient wavelet represent’n in high D L-CAMP: A bird's view of the CAP methodologies

L-CAMP: The algorithms & performance analysis

The laplacian (CP) pyramid: |

Laplacian Pyramids (Burt and Adelson, 1983)

Yo—C° sy, Ly, € Yoj+1
DJ DJ DJ DJ
dO d—l d—Z d7j+1

he, hp : Z" — R are symmetric, normalized, lowpass filters
For each h:= hc and h:= h,, h(k) = h(—=k), >,z h(k) = 1.
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The laplacian (CP) pyramid: |

Laplacian Pyramids (Burt and Adelson, 1983)

Yo—S Ly % y,C % yin_C y,
of o] o] o
do d, d_, cee d,j+1

he, hp : Z" — R are symmetric, normalized, lowpass filters
For each h:= hc and h:= h,, h(k) = h(—=k), >,z h(k) = 1.

1, 1+ are downsampling & upsampling:

yi(k) = y(2k), kez"
y(k/2), ke2z",
k) =
vk 0, otherwise.
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Wavelets as a variation of CP
Derivation of wavelets from CP pyramids

Decompose the detail map | — PC: | —PC=Y"/_; RD;
Di:yj— (hixy), = W1, R:y—2"(hxy)

with h; a real, symmetric, highpass: 3, ., hi(k) = 0.

C c c
y-2 Y—jo+1 —— Y—ijo
\Wl 1 Wy 2 Wi 3 B\Wlfjo
Wo 1 Wo 2 W2 3 . 2, —io
W3 1 W3 _2 W3 _3 W:f;,—J0
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Wavelets as a variation of CP

Derivation of wavelets from CP pyramids

Decompose the detail map | — PC: | —PC=Y"/_; RD;
Di:yj— (hixy), = W1, R:y—2"(hxy)

with h; a real, symmetric, highpass: 3, ., hi(k) = 0.

C c c
y-2 Y—jo+1 —— Y—ijo
\Wl 1 Wy 2 Wi 3 B\Wlfjo
W2 1 Wo 2 Wo _3 . 2,~jo
W3 _1 W3 _2 W3 3 W3 —io

We can recover yo from vy, Wijg, . ... Wrjo. ..., W11, ..., Wp

H r r
since Yjo+1 = > i—1 RWijo+PYio, Yio+2 = Dig RWijo+1 +PYe+1
and so on.
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Wavelets as a variation of CP: example
Laplacian pyramid vs. wavelets: Examples in 2D

Part Ill: L-CAMP representation based on sampling

1/4 1/4
There are four (hidden) highpass filters:

[+3/4 —1/4} [—1/4 +3/4} [—1/4 —1/4}

Burt-Adelson CP: Let he = hp = [ 1/4 1/4 ] .

~1/4 -1/4
~1/4 -1/4|" |-1/4 -1/4|’ |+3/4 -1/4 [ ]

~1/4 +3/4

2D Haar wavelets: There are three highpass filters:

[+1/4 —1/4] [+1/4 —1/4]

+1/4 +1/4
+1/4 -1/4|° |-1/4 +1/4 ’[ ]

~1/4 —1/4

In both cases, average filter size is 4.
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Pyramidal representations and wavelets
Introduction to localness and performance
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Laplacian pyramid vs. wavelets: example cont’ed

a

ap

az

atag—ap—as | ytay—ap—ag

4 4
atay—az—ay

W 7
B-A 331—324—33—?14 3a2—a14—a3—a4
3azg—ag—ap—ay|3ay—a;—ar—ag

4 4
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Wavelets: Desired properties

or, why do we need new constructions?

@ Localness in space

Quantifying “local”:  the number of wavelets within a single
resolution whose support contains a given generic pointt € R".

Note: this is the same as the total volume of the mother
wavelets set U:

vol(¥) := ) " vol(suppp).

Ypew

@ Localness in frequency: high performance.

© Speed: Small constants in the linear complexity of the
algorithms.
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Performance |: The analysis operator

U C Ly is finite. The wavelet system X(¥) is then

Yiki=22¢(2 - —k), veV,jeZkeZ"

The wavelet representation of f € L, is then the discrete set of
inner products

Tt = ({f,X)xexw), (F,09) = Rnf(t)g(t) dt.

The wavelet system X(¥) is a frame of L, if

S IEP~ IR, Vel
XeX(T)
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Performance Il: Jackson-type performance

Wg = {f € Lo, [flwg := /(| -[*F )|, < oo} a > 0.

12, ) = Sz kezn 221, K) 2
Jackson-type performance of a frame X(¥) :

55 :=sup{a > 0: X(¥) satisfies (1) for the given a},

PYeWw

s; is essentially determined by the vanishing moments of X(¥).
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L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Performance lll: Bernstein-type performance

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Bernstein-type performance of a frame X(7) :

sg :=sup{a > 0: X(¥) satisfies (1) and (2) for the given a},

> T flleze) = Balflwg,  Vf € Lo, )
bev

@ sg < s3; usually strict inequality holds.
@ sgis not connected directly to any property of the system

X(W).
@ s is essentially determined by s;, and by the smoothness
+ of the dual system.

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Comparison of wavelets to CP

Question: why or why not decomposing the detail map | — PC:

| —PC=>"{_,RD;
@ Reducing the size of the filters
@ Making it possible to be non-redundant: r = 2" — 1
© Making it possible to be highly redundant: r >> 2" — 1
for applications in feature detection and denoising
© Solid mathematical theory in terms of performance
© Non-trivial to do.

Intrinsic factorizations in high-D are essentially impossible.

Later: not all wavelet constructions are obtained in this
way.
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. . L . Pyramidal representations and wavelets
Part I: Time-freq. representations of almost-peridoic functions Y A TSI A (i S
Part II: L-CAMP — Efficient wavelet represent’n in high D p

} ) L-CAMP: A bird’s view of the CAP methodologies
Part Ill: L-CAMP representation based on sampling L-CAMP: The algorithms & performance analgsls

Wavelets: Challenges in high-D constructions

or, prevailing approaches go kaput in high-D

The Laplacian pyramid is challenged since:
© It becomes immensely non-local.
@ There was no rigorous performance analysis, hence lack
of mathematical guidance (not even frame analysis).
© “Feels not right”: after all, the most general wavelet
constructions cannot be associated with such pyramid.
Intrinsic wavelet constructions are challenged since:
@ They are in between very difficult and impossible: In n-D,
one needs to define > 2" — 1 different highpass rules
(=mother wavelets).

Simple lifting of univariate wavelets constructions (known as
tensor products) are still challenged since:

@ They lead, again, to highly non-local constructs.
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Wavelets: Challenges in high-D cont’'ed

or, tearful moments for wavelet lovers

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C'/%-function in R,
There are 1023 mother wavelets,

each supported in a box of volume.... 562,000,000,

and the total volume is > 575,000,000,000.

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Wavelets: Challenges in high-D cont’'ed

or, tearful moments for wavelet lovers

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C'/%-function in R,
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

y | 5/3 |L-CAMP [ L-CAMP | 9/7 [L-CAMP |
Sy 2 2 2 4 4
% 1 1.41 2 1.70 2.02
n=3 | 279 TBA TBA 2863 TBA
n=4 | 2145 | TBA TBA | 46529 | TBA
n=5 || 15783 | TBA TBA | 726607 | TBA
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Q Part I: Time-freq. representations of almost-peridoic

functions

@ Almost perdioic functions
@ Capturing the AP-norm
@ Our results

Part II: L-CAMP — Efficient wavelet represent’'n in high D
@ Pyramidal representations and wavelets

@ Introduction to localness and performance

@ L-CAMP: A bird’s view of the CAP methodologies

@ L-CAMP: The algorithms & performance analysis
Part 1ll: L-CAMP representation based on sampling

@ Motivation

@ Sampling based L-CAMP: the algorithms

@ Sampling based L-CAMP: performance
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Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

The CAP representations

Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

@ Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP

pyramid.
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

The CAP representations

@ Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.

@ Step Il: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.

Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

The CAP representations

@ Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.

@ Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.

@ Step lll: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part |: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

The CAP representations

@ Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.

Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!

@ Step lll: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.

@ Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

The CAP representations

@ Step lll: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.

@ Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.

@ Step V: bi-orthogonal constructions. Finding a way to
remove the redundancy from the CAMP and L-CAMP
representation
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

The CAP representations

@ Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.

@ Step V: bi-orthogonal constructions. Finding a way to
remove the redundancy from the CAMP and L-CAMP
representation

@ Step VI: numerous bi-products. For example, we had to

develop new ways for estimating smoothness of refinable
functions in high-D.
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Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

L-CAMP: Hallmarks

Extreme localness.
Works in any spatial dimension.
Trivial to construct and implement.

Super fast algorithms:
linear complexity with tiny constants,
and the constants decay with the dimension!

Solid performance theory
(that shows that, at least in theory, they perform as good as
much more complicated wavelets).
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

L-CAMP: Extreme localness

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C'/%function in R1°.
There are 1023 mother wavelets,

each supported in a box of volume.... 562,000,000,

and the total volume is > 575,000,000,000.
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: Extreme localness

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C'/%function in R1°.
There are 1023 mother wavelets,

each supported in a box of volume.... 562,000,000,

and the total volume is > 575,000,000,000.

A competing L-CAMP system

| \

We construct an L-CAMP system such that it analyses
C?-function in R0,

There are 1024 mother wavelets,

each supported in a box of average volume.... 0.005857,
and the total volume is < 6.
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Q Part I: Time-freq. representations of almost-peridoic

functions

@ Almost perdioic functions
@ Capturing the AP-norm
@ Our results

Part II: L-CAMP — Efficient wavelet represent’'n in high D
@ Pyramidal representations and wavelets

@ Introduction to localness and performance

@ L-CAMP: A bird’s view of the CAP methodologies

@ L-CAMP: The algorithms & performance analysis
Part 1ll: L-CAMP representation based on sampling

@ Motivation

@ Sampling based L-CAMP: the algorithms

@ Sampling based L-CAMP: performance
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Decomposition

Step I: choose three lowpass filters

he :=2" Z 0, =: compression filter
ve{0,1}n
he := n-dimensional enhancement filter
h := 1-D, supported on the odd integers main filter
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part |: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Decomposition

Step I: choose three lowpass filters

Step Il: build the MRA

| is downsampling:
yi(k) = y2k), kez"

(V)2 oo C CZsit:

Yi—-1=Cy = (hc* )|, V).
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part |: Time-freq. representations of almost-peridoic functions
Part Il: L-CAMP — Efficient wavelet represent'n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Decomposition

Step |: choose three lowpass filters

Step II: build the MRA

Step IlI: extract detail coefficients:

(1) For k € 222", dj(K) := y;(K) — (he * yj—1)(k/2).
(2) Forv € {0,1}", and k € v + 222",
di(k) = (k) = (hy) * Y1) (k).

=7 CEEID
h (v) =*
» back to Theorem » back to sampling reconstruction
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part |: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Decomposition

Step |: choose three lowpass filters

Examples of h:

he L« [~1,0,9,0,9,0,—1].

h=[0,1, h= E]’ 16

Step Il: build the MRA

Step IlI: extract detail coefficients:
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Pyramidal representations and wavelets
Introduction to localness and performance

L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Step | for k € 222"

¥i(K) := dj(K) + (he * y;-1)(k/2).
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Part |: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Reconstruction

Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Step |- for k € 222",

Y (K) := di (k) + (he * yj-1)(k/2).

Step |- iteratively, by suitably ordering {0, 1}™\0:

yi(k) = di(k) + (hy@) * ¥3) (K).-

Amos Ron
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Denote: hg is A-tap, his B-tap
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Pyramidal representations and wavelets

Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

L-CAMP: The

Complexity

Denote: he is A-tap, his B-tap J
Decomposition requires for 2" details coefficients:
2"+A+1+(B+1) x (2"—1).

[m] = =
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part |: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Complexity

Denote: he is A-tap, his B-tap

Decomposition requires for 2" details coefficients:
2"+A+14+(B+1) x (2" -1).

Reconstruction requires:A+ 1+ (B4 1) x (2" —1).
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: The algorithms

Complexity

he is A-tap, his B-tap )

Decomposition requires for 2" details coefficients:
2"+A+14+(B+1) x (2" -1).

Reconstruction requires:A+ 1+ (B+ 1) x (2" — 1). |

Average # of operations per one details coefficient

2B+3+2"(A+1).
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Pyramidal representations and wavelets
Introduction to localness and performance

L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

@ The accuracy of the main filter  h:

hxP =P, V univariate polynomial P of degree < s;
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: Performance analysis

The key components in the L-CAMP performance analysis

@ The accuracy of the main filter  h:
hxP =P, V univariate polynomial P of degree < 5
@ The accuracy of the pair (hg, he):

(herxhe)xP = P,V multivariate polynomial P of degree < s,
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: Performance analysis

The key components in the L-CAMP performance analysis

@ The accuracy of the main filter  h:
hxP =P, V univariate polynomial P of degree < 5
@ The accuracy of the pair (hg, he):
(herxhe)xP = P,V multivariate polynomial P of degree < s,

(<}
whose mask is

hehtenson

with hensorthe n-dimensional tensor-product of #
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. . L . Pyramidal representations and wavelets
Part I: Time-freq. representations of almost-peridoic functions Introduction to localness and performance
Part II: L-CAMP — Efficient wavelet represent’n in high D p

} ) L-CAMP: A bird’s view of the CAP methodologies
Part Ill: L-CAMP representation based on sampling L-CAMP: The algorithms & performance anal?/sis

L-CAMP: Performance analysis

L-CAMP based performance results

Theorem (Hur-R, 2005)

Assume that we have an L-CAMP system.

Let ¥ be the mother wavelet set associated with

the highpass filters in L-CAMP Decomposition.

Let min{s;, s} > 2.

Let s3 > 0.

Then X(¥) has s; > min{s;, $;} and sg > min{s;, %, S3}.
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Pyramidal representations and wavelets

Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

L-CAMP: Perform

The Jackson-type performanc

performance chart

*

s* := min{sq, s2}

N IE
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: Performance analysis

Example 1: extremely local MR representations for C! characterization

1 1
h T [éa Oa é]v 2'tap7
o~ 3 1
he(w) =7+ Ze"l"", 2-tap.

@ The accuracy of the univariate filter h: s; = 2.
@ The accuracy of the pair (he, he): s, = 2.
@ The smoothness class of the refinable function
o whose mask is  Nehieneor s s3> 1 (s3 = 1.4).
Average # of operations : 7+ 321",
Total volume of the wavelets’ support : < 5.
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Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

L-CAMP: Performance analysis

Example 2: extremely local MR representations for C2 characterization

1 1
h T [é) 07 é]a 2-tap7
~ 1; 1 3
he((.d) = éell.w + 5 —+ ée_ll‘w, 3'tap

@ The accuracy of the univariate filter h: s; = 2.
@ The accuracy of the pair (he, he): s, = 2.
@ The smoothness class of the refinable function
o whose mask is  Nehieneor s s3> 2 (s3 = 2.4).
Average # of operations : 7 +4- 2",
Total volume of the wavelets’ support : < 6.
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Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Pyramidal representations and wavelets
Introduction to localness and performance
L-CAMP: A bird’s view of the CAP methodologies
L-CAMP: The algorithms & performance analysis

L-CAMP: Performance analysis
L-CAMP vs. Biorthogonal systems for

n=3,45

We compare the L-CAMP systems with biorthogonal tensor
product systems for the spatial dimension n = 3,4, 5.
In the last column, properties of yet another L-CAMP is shown.
In the last 3 rows, the total volume of the mother wavelets is

listed for each n = 3,4, 5.

y | 53 |L-CAMP1 [L-CAMP2 [ 9/7 |[L-CAMP3
s 2 2 2 4 4
% 1 1.41 2 1.70 2.02
n=3 ] 279 4.6 5.6 2863 14.4
n=4 | 2145 4.8 5.8 46529 16.7
n=5 [ 15783 4.9 5.9 726607 18.8
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Q Part I: Time-freq. representations of almost-peridoic
functions
@ Almost perdioic functions
@ Capturing the AP-norm
@ Our results

Q Part 1l: L-CAMP — Efficient wavelet represent’n in high D
@ Pyramidal representations and wavelets
@ Introduction to localness and performance
@ L-CAMP: A bird’s view of the CAP methodologies
@ L-CAMP: The algorithms & performance analysis

e Part lll: L-CAMP representation based on sampling
@ Motivation
@ Sampling based L-CAMP: the algorithms
@ Sampling based L-CAMP: performance
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo

@ Yo : Z" — C: initial data set
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo Y-1 y-2 e Yj+1 — Y-

@ yp: Z" — C: initial data set

@ y_1,...,Y-j: coarse resolutions of the data
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo c Yy-1 c y-2 c c y—j+1L>Y—j

@ Yo : Z" — C: initial data set
@ y_1,...,Y-j: coarse resolutions of the data
@ C:y— (hcxy)|, het low-pass filter, |: downsampling.
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo Y-1 y-2 Lo C y_j+1L>y,j

NN N

do d_1 d_, <o d,j+1

@ Yo : Z" — C: initial data set

@ y_1,...,Y-j: coarse resolutions of the data
@ C:y— (hcxy)|, he: low-pass filter, |: downsampling.
@ do,...,d_j1: (collection of) detail coefficients
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo Y-1 y-2 Lo C y_j+1L>y,j

NN N

do d_1 d_, <o d,j+1

@ Yo : Z" — C: initial data set

@ y_1,...,Y-j: coarse resolutions of the data

@ C:y— (hcxy)|, he: low-pass filter, |: downsampling.
@ do,...,d_j1: (collection of) detail coefficients

@ D:yw— ((hyxy)|)i=1..r, hi: high-pass filter
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo Y-1 y-2 Lo C y_j+1L>y,j

NN N

do d_1 d_, <o d,j+1

@ Yo : Z" — C: initial data set

@ y_1,...,Y-j: coarse resolutions of the data

@ C:y— (hcxy)|, he: low-pass filter, |: downsampling.
@ do,...,d_j1: (collection of) detail coefficients

@ D:yw— ((hyxy)|)i=1..r, hi: high-pass filter

@Y m <= Y mi1Udn
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo ¢ y-1 ¢ y-2 c ...._° Y—j+1 _c Y-
do d d “e d_j+1

@ Yo : Z" — C: initial data set

@ y_1,...,Y-j: coarse resolutions of the data

@ C:y— (hexy)|, he: low-pass filter, |: downsampling.
@ do,...,d_j1: (collection of) detail coefficients

@ D:yw— ((hyxy)|)i=1..r, hi: high-pass filter

@Y m <= Y mi1Udn
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo ¢ y-1 ¢ y—2 c . ..._c Y—j+1 _c Y—j
do d_1 d_2 s d,j+1

Concerns with C:y (CxY),

@ Computation always required. High overhead when
computing detail coefficients selectively.
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Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo S ya Sy, S Sy C oy
do d d “e d_j+1

Concerns with C:y (CxY),

@ Computation always required. High overhead when
computing detail coefficients selectively.

@ Change in resolution of data causes re-computing all
coefficients.
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo y_1 Y2 N VA T R VA
do d_1 d_, s d,j+1

Concerns with C:y— (cxYy),

@ Computation always required. High overhead when
computing detail coefficients selectively.

@ Change in resolution of data causes re-computing all
coefficients.

@ Excessive blurring.
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo c Y-1 c y—2 c c y,jHL}y,j

D D D D

do dg d E d

Possible Remedy

C:y—(y),, le, c=9
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

MRA Pyramids

Yo ¢ y-1 ¢ y—2 c . ..._c Y—j+1 _c Y—j
do d_1 d_2 s d,j+1

Possible Remedy

C:y—(y),, le, c=9

—> Pyramidal Representations based on Sampling
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Q Part I: Time-freq. representations of almost-peridoic
functions
@ Almost perdioic functions
@ Capturing the AP-norm
@ Our results

Q Part Il: L-CAMP — Efficient wavelet represent’n in high D
@ Pyramidal representations and wavelets
@ Introduction to localness and performance
@ L-CAMP: A bird’s view of the CAP methodologies
@ L-CAMP: The algorithms & performance analysis

e Part lll: L-CAMP representation based on sampling
@ Motivation
@ Sampling based L-CAMP: the algorithms
@ Sampling based L-CAMP: performance
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Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Decomposition
X2
4
2
X1
—4 -2 0 2 4
-2
—4

Starting data
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Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Decomposition
X2
4
2
X1
—4 -2 0 2 4
-2
—4

Coarser resolution
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Decomposition
X2
4
2
X1
—4 -2 0 2 4
-2
—4

Locations of detail coefficients dy o)
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Sampling based L-CAMP
Decomposition
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Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Decomposition
X2
4
2
X1
—4 -2 0 2 4
-2
—4

Locations of detail coefficients d g g
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d1,0)(1, 2)

x2
4
2
X
22 o 2 a4 %t
) 19 9 _1 h
16 16 16 16
: : : —s X
3 -1 1 3
—4

The main filter h (right), and the points involved in calculation
(blue)
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d1,0)(1, 2)

X2
. ° . . h(lﬂo) — (5 - hl)( - (1, O))
X1
1 s 9 _a h
16 16 16 16
4 + + + X
-3 -1 1 3

High-pass filter associated with (1, 0)

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d1,0)(1, 2)

X2
° ° ° e h(lo) - ((5 - hl)( - (1, O))
index
X1

1 9 9 _2 h

16 16 16 16
- . - - X

-3 -1 1 3

Subscript 1 : index of 1in (1,0)

Amos Ron Wavelet representations



Motivation
Sampling based L-CAMP: the algorithms
Sampling based L-CAMP: performance

Part I: Time-freq. representations of almost-peridoic functions
Part Il: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Sampling based L-CAMP

Decomposition: Computation of  d1,0)(1, 2)

X2
N S (1,0)
1 _ 9 _ 9
16 16 16
) v _1 h
16 16 16 16
+ . . + X
-3 -1 1 3

h; : hin x;-direction
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Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D

Sampling based L-CAMP:

Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP:

Sampling based L-CAMP

Decomposition: Computation of  d1,0)(1, 2)

the algorithms
performance

X2

Weights used in calculation

Amos Ron Wavelet representations
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d,1)(—2, 1)

x2
4
2
X
2 =2 o 2 a4 %t
) 19 9 _1 h
16 16 16 16
: : : —s X
3 -1 1 3
—4

The main filter h (right), and the points involved in calculation
(blue)
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d,1)(—2, 1)

X2
. ho,1) = (6 —h2)(- — (0, 1))
X1
. 1 9 1 h
16 16 16 16
= - = = X
-3 -1 1 3

High-pass filter associated with (0, 1)
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d,1)(—2, 1)

X2
. ho1) = (0 —h2)(- = (0,1))
. index
X1
. 1 9 9 _1 h
16 16 16 16
= - = = X
-3 -1 1 3

Subscript 2 : index of 1in (0, 1)
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d,1)(—2, 1)

X2

2 hoy) = (6 —h2)(- = (0, 1))

ol r\\_l\ o)

o~__1 h
———— 16 16 16 16
+ 4+ ¢+ + X
-3 -1 1 3

h, : hin xo-direction
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d,1)(—2, 1)

X2

le h
= 9 1
%~~~ - 16 16 16 — 16
Y Y *- *- X
hd hi hd hd
-3 -1 1 3

Weights used in calculation
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  dg,1y(—1,1)

x2
4
2
X
2 =2 o 2 a4 %t
) 19 9 _1 h
16 16 16 16
: : : —s X
3 -1 1 3
—4

The main filter h (right), and the points involved in calculation
(blue)
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  dg,1y(—1,1)

X2

X1

_1 9 9 _ 1
16 16 16 16
- + Py -
* * * *

-3 -1 1 3

High-pass filter associated with (1, 1)
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  dg,1y(—1,1)

X2
. hiy = (0 —h)(-—(1,1))
° index
X1
U 1 9 9 _1 h
16 16 16 16
= - = = X
-3 -1 1 3

Subscript 2 : index of last 1in (1,1)

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  dg,1y(—1,1)

X2

le

16

-3 hiy = (6 —h2)(- — (1,1))

[ ]

,% X1

1

LA S M T
+ + + + X
-3 -1 1 3

hy : hin xo-direction
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  dg,1y(—1,1)

16 9 ) -1 h
T 16 16 16 16
+ 4+ ¢+ + X
-3 -1 1 3

Weights used in calculation

Amos Ron Wavelet representations



X2

4
Enhancement filterhe =46 . . . . ..



X2

it
v

—4
dog isOforhe=¢ . . -
~ AmosRon  Waveletrepresentatons



X2

4
-2
9
32 .
2
9
32
1
32

—4
Enhancement fllter he (DD®> CEFr CEr «E>» A
~ AmosRon  Waveletrepresentatons



Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Decomposition: Computation of  d(o,0)(0, 0)

X2
8
1
2
4
-2
32 Xl
-8 —4 oL 4 8
_ 9
3]
—4
1
2
-8

Weights used when he is (diagonal) DDA filter
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Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
4
2
X1
—4 —2 0 2 4
—2
—4

Data at grid points are to be recovered
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
4
2
X1
—4 —2 0 2 4
—2
—4

Recovered points (from coarse representation)
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
4
2
X1
—4 —2 0 2 4
—2
—4

Points used for computing d1 g)(1,2)
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Part I: Time-freq. representations of almost-peridoic functions
Part Il: L-CAMP — Efficient wavelet represent’n in high D
Part Ill: L-CAMP representation based on sampling

Sampling based L-CAMP

Reconstruction

Motivation
Sampling based L-CAMP: the algorithms
Sampling based L-CAMP: performance

X2

values available

—4

Four points already recovered

Amos Ron

Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
4
1 \
2 ‘ use d(1 o) to recover
\\
—4 —2 0 2 \%
values available\
—2
—4

Recover all (1,0) 4 2Z x 2Z this way
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Sampling based L-CAMP
Reconstruction
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Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
4
2
X1
—4 —2 0 2 4
—2
—4

Points used for computing d 1)(—2,1)

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions Motivation
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Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2

I Vel I Vs I Vg

X1
| [ values available
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Four points already recovered

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions Motivation

Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
\ 4
////ﬁ
=2 ‘ use do1) to recover
\
X1
—4 —2 N 0 2 ~4 |
| [ | values available |
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Recover all (0, 1) 4 2ZZ x 2Z this way
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Reconstruction
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2

1
] ‘ use d(1 1 to recover
X1
=2 ] 2] T+
| |values available]|
42 | ]

Recover all (1,1) + 22 x 2ZZ this way
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance
Sampling based L-CAMP
Reconstruction
X2
4
2
X1
—4 —2 0 2 4
—2
—4

All data recovered!
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Part I: Time-freq. representations of almost-peridoic functions Motivation
Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Performance Regions

vanishing moments
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Part Il: L-CAMP — Efficient wavelet represent’n in high D Sampling based L-CAMP: the algorithms
Part Ill: L-CAMP representation based on sampling Sampling based L-CAMP: performance

Sampling based L-CAMP

Performance Regions
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Motivation

Sampling based L-CAMP: the algorithms
Sampling based L-CAMP: performance

Definition

Wavelet system X(¥) has m vanishing moments if

/t%(t)dt =0, YO<|B<m—1Vyec V.

[m] = =

DA
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