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Definition of almost periodic functions

Definition
A continuous complex-valued function f on IR is called almost
periodic if for every ε > 0 there exists an l > 0 such that every
interval of length l contains at least one point τ for which

sup
x
|f (x + τ)− f (x)| < ε.

τ is called an almost period of f relative to ε.

We denote by AP the set of all almost periodic functions on IR.
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The inner product norm

AP : a non-separable incomplete inner product space

〈f ,g〉AP := lim
T→∞

1
2T

∫ T

−T
f (x)ḡ(x)dx.

back to wavelet

{eiξ·}ξ∈IR: a complete orthonormal basis in AP.

f (x) ∼
∑

a(λ)eiλx, a(λ) := f̂ (λ) := 〈f ,eiλ·〉AP.

σ(f ) := {λ ∈ IR |a(λ) 6= 0} countable set.

||f ||2AP =
∑

λ∈σ(f ) |a(λ)|2.
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The averaging process

A wavelet system:
back to earlier results

α ∈ IN, Ψ ⊂ L2(IR) finite,

X(Ψ, α) := {
√
αj ψj,k : ψj,k := α−jψ(α−j · −k), j, k ∈ ZZ}.

Averaging with wavelet systems

∑
j∈ZZ

lim
N→∞

1
2N

N∑
k=−N

∑
ψ∈Ψ

|〈f , ψj,k〉|2

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP – Efficient wavelet represent’n in high D

Part III: L-CAMP representation based on sampling

Almost perdioic functions
Capturing the AP-norm
Our results

The averaging process

A wavelet system:
back to earlier results

α ∈ IN, Ψ ⊂ L2(IR) finite,

X(Ψ, α) := {
√
αj ψj,k : ψj,k := α−jψ(α−j · −k), j, k ∈ ZZ}.

Averaging with wavelet systems

∑
j∈ZZ

lim
N→∞

1
2N

N∑
k=−N

∑
ψ∈Ψ

|〈f , ψj,k〉|2

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP – Efficient wavelet represent’n in high D

Part III: L-CAMP representation based on sampling

Almost perdioic functions
Capturing the AP-norm
Our results

The averaging process

A Gabor system:

t0,w0 > 0, K := t0ZZ, L := w0ZZ, Ψ ⊂ L2(IR) finite,

X(Ψ, t0,w0) := {ψk,l := ψ(· − k)eil(·−k) : k ∈ K, l ∈ L, ψ ∈ Ψ}

Averaging with Gabor systems∑
l∈L

lim
N→∞

1
2Nt0

∑
k∈K(N)

∑
ψ∈Ψ

|〈f , ψk,l〉|2
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Earlier results using wavelets

Assumptions:

1 Γ(k) := supλ∈IR
∑

j∈ZZ

∣∣∣ψ̂(αjλ)ψ̂
(
αj(λ− 2πk)

)∣∣∣ , k ∈ ZZ.

2 Ã := infλ∈IR
∑

j∈ZZ

∣∣∣ψ̂(αjλ)
∣∣∣2 −∑

k6=0 (Γ(k)Γ(−k))1/2 > 0

3 B̃ := supλ∈IR
∑

j∈ZZ

∣∣∣ψ̂(αjλ)
∣∣∣2 +

∑
k6=0 (Γ(k)Γ(−k))1/2 <∞

Theorem (F. Galindo, 2004 a)

afollowing Partington and Ünalmis (2001)

For f ∈ AP with f̂ ({0}) = 0,

Ã||f ||2AP ≤
∑
j∈ZZ

lim
N→∞

1
2N + 1

N∑
k=−N

|〈f , ψj,k〉|2 ≤ B̃||f ||2AP.
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Earlier results using Gabor systems

Assumptions:

ψ is bounded and ψ(t) = O( 1
t2 ) as t → ±∞.

Γ(k) := supλ
∑

m∈ZZ

∣∣∣ψ̂(λ−mw0)ψ̂(λ− 2πk
t0
−mw0)

∣∣∣ , k ∈ ZZ

Ã := infλ
∑

m∈ZZ |ψ̂(λ−mw0)|2 −
∑

k∈ZZ\0 (Γ(k)Γ(−k))1/2
> 0

B̃ := supλ
∑

m∈ZZ |ψ̂(λ−mw0)|2 +
∑

k∈ZZ\0 (Γ(k)Γ(−k))1/2
<∞

Theorem (F. Galindo, 2004 a)

afollowing Partington and Ünalmis, 2001

Ã||f ||2AP ≤ lim
N→∞

1
2N + 1

N∑
l=−N

∑
k∈ZZ

|〈f , ψk,l〉|2 ≤ B̃||f ||2AP

for every f ∈ AP.
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L2(IR)-wavelet respresentations

Definition: Frames
X ⊂ L2(IR) is a frame iff there exist A,B> 0 such that

A‖f‖2 ≤
∑
x∈X

|〈f , x〉|2 ≤ B‖f‖2,∀f ∈ L2(IR).

Fiberization of wavelets: For an wavelet system X := X(Ψ, α),

G̃(λ) :=

 ∞∑
j=κ(λ−λ′)

∑
ψ∈Ψ

ψ̂(αj(λ− k))¯̂ψ(αj(λ− l))


(k,l)∈(2πZZ)2

.

G∗ := G∗X : IR → IR : λ 7→ ||G̃(λ)||.
G∗− := G∗−X : IR → IR : λ 7→ ||G̃−1(λ)||.

Theorem, R-Shen, JFA 1997

X is a fundamental frame for L2(IR)
if and only if G∗,G∗− ∈ L∞(IR).

Furthermore, the frame bounds of X are
||G∗||L∞(IR) and 1/||G∗−||L∞(IR).
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Main result on wavelets

Assumptions:

X = X(Ψ, α) ⊂ L1(IR): a wavelet system∑∞
j=κ(γ) ψ̂(αj ·)¯̂ψ(αj(·+ γ)) is continuous, where

κ(λ) := inf{j ∈ ZZ : αjλ ∈ 2πZZ}, γ ∈ ∪j∈ZZ2πZZ/αj , ψ ∈ Ψ

Theorem, Kim-R, CA 200x

X is an L2(IR) frame with frame bounds A,B iff for any f ∈ AP with
f̂ (0) = 0,

A‖f‖2
AP ≤

∑
j∈ZZ

lim
N→∞

1
2N

N∑
k=−N

∑
ψ∈Ψ

|〈f , ψj,k〉|2 ≤ B‖f‖2
AP

(Note: the sharpest frame bounds are also the sharpest AP bounds).
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L2(IR)-Gabor representations

For a Gabor system X := X(Ψ, t0,w0),

G̃(λ) :=

 1
t0

∑
ψ∈Ψ

∑
l∈L

ψ̂ (λ− d− l) ¯̂
ψ (λ− d′ − l)


(d,d′)∈D2

.

G∗ := G∗X : IR → IR : λ 7→ ||G̃(λ)||.
G∗− := G∗−X : IR → IR : λ 7→ ||G̃−1(λ)||.

Theorem, R-Shen, DMJ, 1997

X is a fundamental frame for L2(RR)
if and only if G∗,G∗− ∈ L∞(IR).

Furthermore, the frame bounds of X are ||G∗||L∞(IR) and
1/||G∗−||L∞(IR).

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP – Efficient wavelet represent’n in high D

Part III: L-CAMP representation based on sampling

Almost perdioic functions
Capturing the AP-norm
Our results

L2(IR)-Gabor representations

For a Gabor system X := X(Ψ, t0,w0),

G̃(λ) :=

 1
t0

∑
ψ∈Ψ

∑
l∈L

ψ̂ (λ− d− l) ¯̂
ψ (λ− d′ − l)


(d,d′)∈D2

.

G∗ := G∗X : IR → IR : λ 7→ ||G̃(λ)||.
G∗− := G∗−X : IR → IR : λ 7→ ||G̃−1(λ)||.

Theorem, R-Shen, DMJ, 1997

X is a fundamental frame for L2(RR)
if and only if G∗,G∗− ∈ L∞(IR).

Furthermore, the frame bounds of X are ||G∗||L∞(IR) and
1/||G∗−||L∞(IR).

Amos Ron Wavelet representations



Part I: Time-freq. representations of almost-peridoic functions
Part II: L-CAMP – Efficient wavelet represent’n in high D

Part III: L-CAMP representation based on sampling

Almost perdioic functions
Capturing the AP-norm
Our results

Main result on Gabor

Assumptions:
X = X(Ψ, t0,w0) ⊂ L1(IR) a Gabor system
D := 2πZZ/t0, L := w0ZZ, ψ ∈ Ψ,∑

l∈L

ψ̂(· − l)¯̂ψ(· − d− l)

is continuous

Theorem, Kim-R, CA, 200x

X is an L2(IR) frame with frame bounds A,B iff for any f ∈ AP,

A‖f‖2
AP ≤

∑
l∈L

lim
N→∞

1
2Nt0

∑
k∈K(N)

∑
ψ∈Ψ

|〈f , ψk,l〉|2 ≤ B‖f‖2
AP

where K(N) := {nt0 ∈ K : −N ≤ n≤ N} (A,B: optimal).
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A‖f‖2
AP ≤

∑
l∈L

lim
N→∞

1
2Nt0

∑
k∈K(N)

∑
ψ∈Ψ

|〈f , ψk,l〉|2 ≤ B‖f‖2
AP

where K(N) := {nt0 ∈ K : −N ≤ n≤ N} (A,B: optimal).
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The laplacian (CP) pyramid: I
Laplacian Pyramids (Burt and Adelson, 1983)

y0 y−1 y−2 · · · y−j+1 y−j

d0 d−1 d−2 · · · d−j+1

C C C C C

D D D D

Definition of the detail map

D = I − PC

hc,hp : ZZn → IR are symmetric, normalized, lowpass filters
For each h := hc and h := hp, h(k) = h(−k),

∑
k∈ZZn h(k) = 1.

↓, ↑ are downsampling & upsampling:

y↓(k) = y(2k), k ∈ ZZn.

y↑(k) =

{
y(k/2), k ∈ 2ZZn,

0, otherwise.
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(yj)∞j=−∞ ⊂ CZZn
s.t:

yj−1 = Cyj := (hc ∗ yj)↓, ∀j.
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Wavelets as a variation of CP
Derivation of wavelets from CP pyramids

Decompose the detail map I − PC: I − PC =
∑r

i=1 RiDi

Di : yj 7→ (hi ∗ yj)↓ =: wi,j−1, Ri : y 7→ 2n (hi ∗ y↑)

with hi a real, symmetric, highpass:
∑

k∈ZZn hi(k) = 0.

y0 y−1 y−2 · · · y−j0+1 y−j0

w1,−1 w1,−2 w1,−3 w1,−j0w2,−1 w2,−2 w2,−3 · · · w2,−j0w3,−1 w3,−2 w3,−3 w3,−j0

C C C C C

D
D D D

We can recover y0 from yj0,w1,j0, . . . ,wr,j0, . . . ,w1,−1, . . . ,wr,−1

since yj0+1 =
∑r

i=1 Riwi,j0+Pyj0, yj0+2 =
∑r

i=1 Riwi,j0+1 +Pyj0+1

and so on.
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Wavelets as a variation of CP: example
Laplacian pyramid vs. wavelets: Examples in 2D

Burt-Adelson CP: Let hc = hp =
[

1/4 1/4
1/4 1/4

]
.

There are four (hidden) highpass filters:[
+3/4 −1/4
−1/4 −1/4

]
,

[
−1/4 +3/4
−1/4 −1/4

]
,

[
−1/4 −1/4
+3/4 −1/4

]
,

[
−1/4 −1/4
−1/4 +3/4

]

2D Haar wavelets: There are three highpass filters:[
+1/4 −1/4
+1/4 −1/4

]
,

[
+1/4 −1/4
−1/4 +1/4

]
,

[
+1/4 +1/4
−1/4 −1/4

]
In both cases, average filter size is 4.

back to algorithms
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Laplacian pyramid vs. wavelets: example cont’ed

B-A

Wa1 a2

a3 a4 3a1−a2−a3−a4
4

3a2−a1−a3−a4
4

3a3−a1−a2−a4
4

3a4−a1−a2−a3
4

a1+a3−a2−a4
4

a1+a4−a2−a3
4

a1+a2−a3−a4
4
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Wavelets: Desired properties
or, why do we need new constructions?

1 Localness in space

Quantifying “local”: the number of wavelets within a single
resolution whose support contains a given generic point t ∈ IRn.

Note: this is the same as the total volume of the mother
wavelets set Ψ:

vol(Ψ) :=
∑
ψ∈Ψ

vol(suppψ).

2 Localness in frequency: high performance.
3 Speed: Small constants in the linear complexity of the

algorithms.
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Performance I: The analysis operator

Ψ ⊂ L2 is finite. The wavelet system X(Ψ) is then

ψj,k := 2j n
2ψ(2j · −k), ψ ∈ Ψ, j ∈ ZZ, k ∈ ZZn

The wavelet representation of f ∈ L2 is then the discrete set of
inner products

T∗X(Ψ)f := (〈f , x〉)x∈X(Ψ), 〈f ,g〉 :=
∫

IRn
f (t)g(t) dt.

The wavelet system X(Ψ) is a frame of L2 if∑
x∈X(Ψ)

|〈f , x〉|2 ≈ ‖f‖2
L2
, ∀f ∈ L2.
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Performance II: Jackson-type performance

Wα
2 := {f ∈ L2, |f |Wα

2
:= ‖(| · |α f̂ )∨‖L2 <∞}, α > 0.

‖c‖2
`2(α) :=

∑
j∈ZZ,k∈ZZn 22jα|c(j, k)|2.

Jackson-type performance of a frame X(Ψ) :

sJ := sup{α > 0 : X(Ψ) satisfies (1) for the given α},

∑
ψ∈Ψ

‖T∗X(ψ)f‖`2(α) ≤ Aα|f |Wα
2
, ∀f ∈ L2. (1)

sJ is essentially determined by the vanishing moments of X(Ψ).
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Performance III: Bernstein-type performance

Bernstein-type performance of a frame X(Ψ) :

sB := sup{α > 0 : X(Ψ) satisfies (1) and (2) for the given α},∑
ψ∈Ψ

‖T∗X(ψ)f‖`2(α) ≥ Bα|f |Wα
2
, ∀f ∈ L2. (2)

sB ≤ sJ; usually strict inequality holds.

sB is not connected directly to any property of the system
X(Ψ).
sB is essentially determined by sJ, and by the smoothness
+ Strang-Fix order of the dual system.
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Comparison of wavelets to CP

Question: why or why not decomposing the detail map I − PC:
I − PC =

∑r
i=1 RiDi

Pros
1 Reducing the size of the filters
2 Making it possible to be non-redundant: r = 2n − 1
3 Making it possible to be highly redundant: r >> 2n − 1

for applications in feature detection and denoising
4 Solid mathematical theory in terms of performance

Cons
1 Non-trivial to do.

Intrinsic factorizations in high-D are essentially impossible.
Neutral

1 Later: not all wavelet constructions are obtained in this
way.
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Wavelets: Challenges in high-D constructions
or, prevailing approaches go kaput in high-D

The Laplacian pyramid is challenged since:
1 It becomes immensely non-local.
2 There was no rigorous performance analysis, hence lack

of mathematical guidance (not even frame analysis).
3 “Feels not right”: after all, the most general wavelet

constructions cannot be associated with such pyramid.
Intrinsic wavelet constructions are challenged since:

1 They are in between very difficult and impossible: In n-D,
one needs to define ≥ 2n − 1 different highpass rules
(=mother wavelets).

Simple lifting of univariate wavelets constructions (known as
tensor products) are still challenged since:

1 They lead, again, to highly non-local constructs.
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Wavelets: Challenges in high-D cont’ed
or, tearful moments for wavelet lovers

Benchmark: Tensor product of biorthogonal 9/7
The tensor biorthogonal 9/7 can analyse C1.70-function in IR10.
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

5/3 L-CAMP L-CAMP 9/7 L-CAMP
sJ 2 2 2 4 4
sB 1 1.41 2 1.70 2.02

n = 3 279 TBA TBA 2863 TBA
n = 4 2145 TBA TBA 46529 TBA
n = 5 15783 TBA TBA 726607 TBA
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The CAP representations

Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.
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The CAP representations

Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.

Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.
Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!
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The CAP representations

Step I: CAP. Generalizing the Laplacian pyramid into the
new Compression-Alignment-Prediction (CAP) pyramids:
all wavelet constructions are obtained by factoring a CAP
pyramid.

Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.
Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!

Step III: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.
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The CAP representations

Step II: The alternative inversion, aka the breakthrough.
Replacing the fast inversion of CAP as by a wavelet-type
inversion.
Therefore, all the CAP pyramids are a special type of
wavelet representations (even without factoring)!!

Step III: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.

Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!
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The CAP representations

Step III: performance analysis. Obtaining in this way
complete performance analysis of CAP, hence of Laplacian
pyramids.

Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!

Step V: bi-orthogonal constructions. Finding a way to
remove the redundancy from the CAMP and L-CAMP
representation
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The CAP representations

Step IV: deriving the more local CAMP and L-CAMP.
Identifying special classes of CAP pyramids that can be
made more local in space, without losing performance.
Simple tricks allow one to transform the immensely
non-local CAP into amazingly local CAMP and L-CAMP!!

Step V: bi-orthogonal constructions. Finding a way to
remove the redundancy from the CAMP and L-CAMP
representation

Step VI: numerous bi-products. For example, we had to
develop new ways for estimating smoothness of refinable
functions in high-D.
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L-CAMP: Hallmarks

1 Extreme localness.
2 Works in any spatial dimension.
3 Trivial to construct and implement.
4 Super fast algorithms:

linear complexity with tiny constants,
and the constants decay with the dimension!

5 Solid performance theory
(that shows that, at least in theory, they perform as good as
much more complicated wavelets).
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L-CAMP: Extreme localness

Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C1.70-function in IR10.
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

A competing L-CAMP system

We construct an L-CAMP system such that it analyses
C2-function in IR10.
There are 1024 mother wavelets,
each supported in a box of average volume.... 0.005857,
and the total volume is < 6.
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Benchmark: Tensor product of biorthogonal 9/7

The tensor biorthogonal 9/7 can analyse C1.70-function in IR10.
There are 1023 mother wavelets,
each supported in a box of volume.... 562,000,000,
and the total volume is > 575,000,000,000.

A competing L-CAMP system

We construct an L-CAMP system such that it analyses
C2-function in IR10.
There are 1024 mother wavelets,
each supported in a box of average volume.... 0.005857,
and the total volume is < 6.
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

back to haar

hc := 2−n
∑

ν∈{0,1}n

δν =: compression filter

he := n-dimensional enhancement filter

h := 1-D, supported on the odd integers main filter

Step II: build the MRA

Step III: extract detail coefficients:
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Decomposition

Step I: choose three lowpass filters

Step II: build the MRA

↓ is downsampling:

y↓(k) = y(2k), k ∈ ZZn

(yj)∞j=−∞ ⊂ CZZn
s.t:

yj−1 = Cyj := (hc ∗ yj)↓, ∀j.

Step III: extract detail coefficients:
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Step II: build the MRA

Step III: extract detail coefficients:

(1) For k ∈ 2ZZn, dj(k) := yj(k)− (he ∗ yj−1)(k/2).
(2) For ν ∈ {0,1}n, and k ∈ ν + 2ZZn,

dj(k) = yj(k)− (hJ(ν) ∗ yj)(k).

hJ(ν) =? sampling

back to Theorem back to sampling reconstruction
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L-CAMP: The algorithms
Decomposition

Step I: choose three lowpass filters

Examples of h:

h = [0,1], h = [
1
2
,0,

1
2
], h =

1
16

× [−1,0,9,0,9,0,−1].

back to performance

Step II: build the MRA

Step III: extract detail coefficients:
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L-CAMP: The algorithms
Reconstruction

Step I: for k ∈ 2ZZn,

yj(k) := dj(k) + (he ∗ yj−1)(k/2).

Step II: iteratively, by suitably ordering {0,1}n\0:

yj(k) = dj(k) + (hJ(ν) ∗ yj)(k).
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L-CAMP: The algorithms
Complexity

Denote: he is A-tap, h is B-tap

Decomposition requires for 2n details coefficients:
2n + A + 1 + (B + 1)× (2n − 1).

Reconstruction requires:A + 1 + (B + 1)× (2n − 1).

Average # of operations per one details coefficient a

aper one complete cycle of decom-recon

2B + 3 + 21−n(A + 1).
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L-CAMP: Performance analysis
The key components in the L-CAMP performance analysis

The accuracy of the main filter h:

h ∗ P = P, ∀ univariate polynomial P of degree < s1

The accuracy of the pair (hc, he):

(he↑∗hc)∗P = P, ∀multivariate polynomial P of degree < s2

The smoothness s3 of the refinable function φdual

whose mask is
ĥêhtensor,

with htensor the n-dimensional tensor-product of δ + h
2 .
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L-CAMP: Performance analysis
L-CAMP based performance results

Theorem (Hur-R, 2005)

Assume that we have an L-CAMP system.
Let Ψ be the mother wavelet set associated with
the highpass filters in L-CAMP Decomposition.
Let min{s1, s2} ≥ 2.
Let s3 > 0.
Then X(Ψ) has sJ ≥ min{s1, s2} and sB ≥ min{s1, s2, s3}.
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L-CAMP: Performance analysis
The Jackson-type performance chart of L-CAMP

The performance chart

−1

1 1 + s
∗

n

1

p

s

s = 1

p
− 1

s = n(1

p
− 1)

s
∗ := min{s1, s2}
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L-CAMP: Performance analysis
Example 1: extremely local MR representations for C1 characterization

h := [
1
2
,0,

1
2
], 2-tap,

ĥe(ω) :=
3
4

+
1
4

e−i1·ω, 2-tap.

The accuracy of the univariate filter h: s1 = 2.
The accuracy of the pair (hc, he): s2 = 2.
The smoothness class of the refinable function
φdual whose mask is ĥêhtensor : s3 > 1 (s3 = 1.4).

Average # of operations : 7 + 3 · 21−n.
Total volume of the wavelets’ support : < 5.
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L-CAMP: Performance analysis
Example 2: extremely local MR representations for C2 characterization

h := [
1
2
,0,

1
2
], 2-tap,

ĥe(ω) :=
1
8

ei1·ω +
1
2

+
3
8

e−i1·ω, 3-tap.

The accuracy of the univariate filter h: s1 = 2.
The accuracy of the pair (hc, he): s2 = 2.
The smoothness class of the refinable function
φdual whose mask is ĥêhtensor : s3 > 2 (s3 = 2.4).

Average # of operations : 7 + 4 · 21−n.
Total volume of the wavelets’ support : < 6.
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L-CAMP: Performance analysis
L-CAMP vs. Biorthogonal systems for n = 3, 4, 5

We compare the L-CAMP systems with biorthogonal tensor
product systems for the spatial dimension n = 3,4,5.
In the last column, properties of yet another L-CAMP is shown.
In the last 3 rows, the total volume of the mother wavelets is
listed for each n = 3,4,5.

5/3 L-CAMP 1 L-CAMP 2 9/7 L-CAMP 3
sJ 2 2 2 4 4
sB 1 1.41 2 1.70 2.02

n = 3 279 4.6 5.6 2863 14.4
n = 4 2145 4.8 5.8 46529 16.7
n = 5 15783 4.9 5.9 726607 18.8
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MRA Pyramids

y0

Description

y0 : ZZn → C: initial data set

y−1, . . . , y−j : coarse resolutions of the data

C : y 7→ (hc ∗ y)↓, hc: low-pass filter, ↓: downsampling.

d0, . . . ,d−j+1: (collection of) detail coefficients

D : y 7→ ((hl ∗ y)↓)l=1,...,r , hl : high-pass filter

y−m ⇐⇒ y−m−1 ∪ d−m
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Concerns with C : y 7→ (c ∗ y)↓
Computation always required. High overhead when
computing detail coefficients selectively.

Change in resolution of data causes re-computing all
coefficients.

Excessive blurring.
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Possible Remedy

C : y 7→ (y)↓, i.e., c = δ

=⇒ Pyramidal Representations based on Sampling
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Wavelet system X(Ψ) has m vanishing moments if∫
tβψ(t)dt = 0, ∀0≤ |β| ≤ m− 1,∀ψ ∈ Ψ.
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