
the dash "−" like any other character,

ATTACGTACTCCATG
ATTACGT−−−−CATG

operations for the gap of length 4.

In maximal score alignments we treat

times.

In terms of evolution this gap is

deletion or insertion of length 4.

But

In an edit script we need edit

hence we charge the s(x,−) costs

probably the result of a

4

4

single

Gaps

�

one character
However, long gaps are less frequent
than short gaps

Biological observations:

Therefore ...
...gaps should be considered as single
units
Gap costs should depend on the
length of the gap, they should be
monotonously growing, but not as
fast as the legth itself.

Gaps are usually longer then just

�

g(n) gap cost of a gap of length n

Gap costs should be subadditive:

n=n1+n2

Subadditivity:

g(n)<=g(n1)+g(n2)

If not:

Gap is cheaper if it is considered
as two successive gaps.

�

e.g. g(n)=9+3n

Scorematrix for pairs of characters
e.g. VT160

Gapcosts g(n)

and

Score= vt(M,M)−g(1)+vt(L,A)−g(2)+vt(V,V)

MYL−−V
M−ACVV

= 6 −2 −15 +4

= −19

−12

SCORING

�

GENERAL GLOBAL ALIGNMENT PROBLEM

Given a score matrix and a
subadditive gap cost function,

alignment.
calculate the global maximal score

�

(G)

i

j

There are three different ways the
alignment of S1[1..i] and S2[1..j]
can end.

(F)

(E)

i

j

i

j

�

for maximal score alignments
The recurrence relation

k<=j−1

F(i,j)= max {V(k,j)−g(i−k)}
k<=i−1

with general gap cost function g(n)

S(i,j)=max{E(i,j),F(i,j),G(i,j)}

where

G(i,j)=S(i−1,j−1)+s(S1(i),S2(j))

E(i,j)= max {V(i,k)−g(j−k)}

Needleman Wunsch algorithm in a
modification by Sankoff.

�

Initialisation

S(0,j)=−g(j)

E(i,0)=−g(i)
E(0,i) undefined

G(i,0) and G(0,j) undefined
G(0,0)=0

F(0,j)=−g(j)
F(j,0) undefined

S(i,0)=−g(i)

�

I

N

T

N

E

R

0 1 2 3 4 5 6 7

0

1

2

4

5

6

7

3

Time Complexity
W R I T E R S

V **
* * * * *

**

*
*
*
*
*
?*

G

F

E

The number of colored spots depends

O(nm)

O(nm)

O(mn)

2

O(nm +mn)

2

2 2

cubic

on the length of the sequences.

**

*

*
*
*

* * * * * * *

�

a gap is extended

g(n)=a+bn

High costs for opening a gap
but lower costs for extending it

There are two different types of
alignments in the (E) case

ATGCTAT
ACGCAATT

ACGCAATT
ATGC−−−−

−
a new gap starts

Affine gap costs

���

E(i,j)=E(i,j−1)−b

ATGC−−−−

ATGCTAT
ACGCAATT

−

The optimal alignment up to positions
E)i and j−1 is of type (

open extend

extend

E(i,j)=max{E(i,j−1),S(i,j−1)−a}−b

 i and j−1 is of type (G)
The optimal alignment up to positions

E(i,j)=S(i,j−1)−a−b

ACGCAATT

� �

S(i,0)=E(i,0)=−a−b*i
S(0,j)=F(0,j)=−a−b*j

Recurrence relation
S(i,j)=max{G(i,j),E(i,j),F(i,j)}

E(i,j)=max{E(i,j−1),S(i,j−1)−a}−b
G(i,j)=S(i−1,j−1)+s(S1(i),S2(j))

F(i,j)=max{F(i−1,j),S(i−1,j)−a}−b

Initialisation

Gotoh’s algorithm

� �

3

F(i,j)=max{F(i−1,j),S(i−1,j)−a}−b

E(i,j)= max{S(i,k)−g(j−k)}
k<=j−1

F(i,j)= max{S(k,j)−g(i−k)}
k<=i−1

O(n)2

TIME COMPLEXITY

General gap costs:

O(n)

E(i,j)=max{E(i,j−1),S(i,j−1)−a}−b

� �

LOCAL CONSERVATION

CTACCT
ACCAAA
TTCAGC
CCAGTC
ATTTTT

TAGCTAAA
GCGGGACA
TCAAAACC
CCCGCTAC
TTCAGCAC
ACTTGCTT

CTA
CTA
CTA
CCA
CTC
CTA

ATCGCA

� �

Domains

� �

Local Alignment

...ATTCCAGATG...

...AT−CTA−−TC...

� �

Idea: Just detect conserved regions
in a global alignment.

� �

The local alignment problem

segments a1 and a2 of S1 and S2, whose
similarity (global alignment score)
is maximal over all pairs of segments
from S1 and S2.

local alignment score of S1 and S2.
We use H(S1,S2) to denote the optimal

Given two sequences S1 and S2, find

� �

the best one.

We take every pair of segments from
S1 and S2, calculate the corresponding
optimal global alignment and choose

Lets say the length of the sequences
are n and m.
There are O(n m)2 2 pairs of segments

each global segment alignment takes
O(nm) time. Hence this algorithm is
O(n m) ... 3 3 slow

We need to go for a better dynamic
programming approach.

Idea:

� �

Local Alignment

D(i,j)=optimal global alignment

The optimal alignment is an
extension of one of three
shorter global alignments.

score of S1[1..i] and S2[1..j].

H(i,j)=optimal local alignment
score of S1[1..i] and
S2[1..j] ?

Global Alignment:

� �

S2[1..j]

i−1
i

jj−1

optimal local
alignment of
S1[1..i−1] and
S2[1..j−1]

optimal local
alignment of
S1[1..i] and

� �

T

H(i,j)=maximal score of all local alignment, that

S1[1..i]
S2[1..j]

H(i,j)=optimal local alignment score of
S1[1..i] and S2[1..j] does not allow a
dynamic programming approach.

BUT

contain S1(i) and S2(j) as there right most characters.

Optimal suffix alignment score of S1[1..i] and S2[1..j]

suffix of the prefix

S1: TATGC TCAT GCTAT
S2: CTGCA TAT

Prefix

GCTATTCAT TATGC

AAT

T
A
T
A
C
G
T
C

A
A

What about:

� �

alignment is the empty alignment.

If none of the alignments that end with

score, we say that the optimal local

THE EMPTY ALIGNMENT

No characters are aligned and the score
is zero.

matching S1(i) and S2(j) has a non negative

� �

ATCGC
TTCCT

T
A
−
A−TTCCT

ATCGCT

ATCGC−
TTCCTA−

T

... H(i,j−1)+g(1)

Note that A is a type (i) extension of
T

4 types of H(i,j)−alignments

the empty alignment

...

...
H(i−1,j)+g(1)

Empty 0

(i)
...
...

H(i−1,j−1)+s(T,A)

(ii)

(iii)

(iv)

...assume linear gap costs

...

� �

max

for local alignments

+s(S1(i),−)

+s(−,S2(i))

+s(S1(i),S2(j))H(i−1,j−1)

H(i,j−1)

H(i−1,j)
H(i,j) =

Recurrence relation

SMITH WATERMAN ALGORITHM

score of S1[1..i] and S2[1..j].

0

S(i,j) = optimal global alignment

� �

INITIALIZATION

4

5

6

7

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

W R I T E R S

V

I

N

T

N

E

R

0 1 2 3 4 5 6 7

0

1

2

3

� �

E R S

V

I

N

T

N

E

R

0 1 2

W

4 5 6 7

0

1

2

3

4

5

6

7

3

R I T

* * * * *

**

*
*
*
*
*
?*

The number of colored spots depends

0

Tabular calculation

on the lengths of the sequences.

**

*

*
*
*

* * * * * * *

� �

I

T

N

E

R

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

W R I T E R S

V

N

* * *

* * * * *
*

*
*
*
*
*
*

max

* * * * *
*
*
*
**

*
*
**

*

**
*
*

* * *

* ** *

*

0

on the length of the sequences.
The number of colored spots depends

Traceback

**

*

*
*
*

* * * *

� �

0 0

5

0 0 0 0 0 0 0

6 7

0

1

2

0

0

0

0

0

0

3

4

5

6

0 0 0 0 0 0

0

0

1

0 0 0 0 0 0 0 0

0

2 3 4

22

C−PC
CAPCA
C−PCD

LACPACS

E
D
C
P
C
D

12 4 12 4

1 4 13 10 4 13 5

0 13 5 10 14 5

0 5 13 5 14 1422

CAPC

� �

Sunken town algorithm

� �

mismatch = −infinity
match =1

gap = −infinity

Optimal local alignment is the
longest common word of the two
sequences

� �

TCCATT

any sequence
a a a a a a a a

S1:a1 a2 a3 a4 a5 a6 a7 a8 a9 a10...

i i i i i i i i1 2 3 4 5 6 7 8
...

with i < i < i < i ...1 2 3 4
is a subsequence of S1.

Example:

S1 AT GTT T C G AT CC A T T

A Sequence

� �

gap = 0

T CC A T T
S2 CCG AA CA GGTCT AT TC C

TCCATT is a common subsequence
of S1 and S2.

Optimal local alignment is the longest
common subsequence

mismatch = −infinity
match = +1

S1 AT GTT T C G A

� �

as the sequences.

q(i)q(j)s(ai,aj)
i,j

E [s]=q

If the local alignment should be a
small region in the alignment
E [s] must be negative.q

q(i)=Probability for character ai
in the background model
(relative frequency of amino acid ai)

expected score per match position.

Otherwise one would in average gain
score by randomly matching characters.
The alignment would be almost as long

Σ

� �

expensive gaps
longest common
word −− local

Phase transition = ?

Phase transition E [s]=0.q

q

q
quasi global
E [s]>0

local
E [s]<0

cheap gaps longest
common subsequence
quasi global

� �

j

q qi

log
ijM

q qi j

j

ijM

s(ai,aj) = log
ij

q q
i

M

q

i j
<= log Σ

q q
i j

E [s]= Σ

= 0
= log(1)

Probabilistic scores
are ok for local alignment.

q q

� �

