Sequence Comparison

- Mutation in DNA is a natural evolutionary process.
- Similarity between DNA sequences can be a clue to a common evolutionary orgin.
- Levenshtein Edit Distance between strings: Mininum number of edit operations to transform one string into another.
- Edit Operations:
- Insert a symbol.
- Delete a symbol.
- Dynamic Programming algorithm to compute edit distance between two strings.

Definition 1 (Distance) A distance on a set E is a function $d: E \times E \rightarrow R$ such that:

1. $d(x, x)=0 \forall x \in E$ and $d(x, y)>0$ for $x \neq y$.
2. $d(x, y)=d(y, x) \forall x, y \in E$ (d is symmetric).
3. $d(x, y) \leq d(x, z)+d(y, z) \forall x, y, z \in E$ (triangle inequality).

- If edit distance limited to insertions and deletions, equivalent to Longest Common Subsequence (LCS) problem.
- Biological term is an alignment.
- Alignment of strings V and W is a two-row matrix such that first (second) row contain charcters of $V(W)$ in order, interspersed with some spaces.
- Score of an alignment is sum of scores of its columns.
- Usually, positive for matching letters, and negative for distinct letters.

$$
\begin{array}{ccccccccc}
\hline A & T & - & C & - & T & G & A & T \\
- & T & G & C & A & T & - & A & -
\end{array}
$$

- Alignments can be local or global.
- Global: Similarity between whole strings.
- Local: Similarity between substrings.
- GenBank: 10^{9} sequences and counting.
- Compare sequence of length 10^{3}.
- Filtering: Search for short substrings and use them as seeds for subsequent searches.
- FASTA and BLAST.

Longest Common Subsequence Problem

Definition 2 (Common Subsequence) Given strings $V=v_{1} \ldots v_{n}$ and $W=w_{1} \ldots w_{m}$ as sequences of indices

$$
1 \leq i_{1}<\ldots<i_{k} \leq n,
$$

and

$$
1 \leq j_{1}<\ldots<j_{k} \leq m
$$

such that

$$
v_{i_{t}}=w_{j_{t}} \text { for } 1 \leq t \leq k
$$

Let $s(V, W)$ be the length k of the LCS, then, $d(V, W)=n+m-2 s(V, W)$ is the minimum number of insertions and deletions to transform $V \rightarrow W$.

Figure 6.1: Dynamic programming algorithm for computing longest common subsequence.

Dynamic Programming

- Algorithm to compute $s(V, W)$.
- $s_{i, j}$ is length of LCS between i-prefix $V_{i}=$ $v_{1} \ldots v_{i}$ of V and j-prefix $W_{j}=w_{1} \ldots w_{j}$ of W.
- $s_{i, 0}=s_{0, j}=0 \forall 1 \leq i \leq n$ and $1 \leq j \leq m$.
- Compute $s_{i, j}$ recursively

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j} \\
s_{i, j-1} \\
s_{i-1, j-1}+1 \quad \text { if } v_{i}=w_{j}
\end{array}\right.
$$

- First (second) term is when $v_{i}\left(w_{j}\right)$ is not present in LCS of V_{i} and W_{j}.
- Third term is when both v_{i} and w_{j} are present in LCS of V_{i} and W_{j}.
- Or when v_{i} matches w_{j}.

Edit Distance

Edit distance can also be computed by dynamic programming with initial conditions $d_{i, 0}=$ $i, d_{0, j}=j \forall 1 \leq i \leq n$ and $1 \leq j \leq m$.

$$
d_{i, j}=\min \left\{\begin{array}{l}
d_{i-1, j}+1 \\
d_{i, j-1}+1 \\
d_{i-1, j-1} \quad \text { if } v_{i}=w_{j}
\end{array}\right.
$$

Backtracking

- Remember where you came from with pointer.
- Backtrack through matrix to find LCS.
- to get V substitute v_{i} for i-th occurence of \uparrow or \nwarrow, and by replacing all occurrences of \leftarrow with - .
- to get W substitute w_{j} for j-th occurence of \leftarrow or nwarrow, and by replacing all occurrences of \uparrow with - .

LCS (V, W)
for $i \leftarrow 1$ to n
$s_{i, 0} \leftarrow 0$
for $i \leftarrow 1$ to m
$s_{0, i} \leftarrow 0$
for $i \leftarrow 1$ to n
for $j \leftarrow 1$ to m
if $v_{i}=w_{j}$
$s_{i, j} \leftarrow s_{i-1, j-1}+1$
$b_{i, j} \leftarrow \nwarrow$
else if $s_{i-1, j} \geq s_{i, j-1}$

$$
s_{i, j} \leftarrow s_{i-1, j}
$$

$$
b_{i, j} \leftarrow \uparrow
$$

else

$$
s_{i, j} \leftarrow s_{i, j-1}
$$

$$
b_{i, j} \leftarrow \leftarrow
$$

return s and b

PRINT-LCS (b, V, i, j)

if $i=0$ or $j=0$ return
if $b_{i, j}=\nwarrow$ PRINT-LCS $(b, V, i-1, j-1)$ print v_{i}
else if $b_{i, j}=\uparrow$
PRINT-LCS $(b, V, i-1, j)$
else
PRINT-LCS $(b, V, i, j-1)$

Sequence Alignment

- Extend a k-letter alphabet with a space '-': $\mathcal{A}^{\prime}=\mathcal{A} \cup\{-\}$
- An alignment of V and W is a $2 \times l$ matrix $A(l \geq n, m)$ with first and second rows containing V and W, respectively, interspersed with spaces.
- No column contains two spaces.
- Columns with space are called indels.
- Columns with space in first (second) row are called insertions (deletions).
- Columns with same letter are matches.
- Columns with different letters are mismatches.
- Score of a column is similarity score $\delta(x, y)$, for every pair of symbols $x, y \in \mathcal{A}$.
- Score of alignment is sum of score of its columns.

$$
\begin{aligned}
& \delta(x, x)=1 \\
& \delta(x,-)=-\sigma \\
& \delta(-, x)=-\sigma \\
& \delta(x, y)=-\mu
\end{aligned}
$$

Global Alignment

Global sequence alignment is to find the alignment of sequences with a maximal score.

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}+\delta\left(v_{i},-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right) \\
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right)
\end{array}\right.
$$

Every alignment corresponds to a path in the edit graph, where sequence alignment is equivalent to finding the longest path from source to sink in directed acyclic graph.

Figure 6.2: Edit graph. The weights of insertion and deletion edges are $-\sigma$, the weights of mismatch edges are $-\mu$, and the weights of match edges are 1 .

Local Alignment

Biologically relevant sequences in part of DNA fragment, but not others. Then, goal is to maximize similarity over substrings. Find maximum entry in whole array which will correspond to optimal local alignment.

$$
s_{i, j}=\max \left\{\begin{array}{l}
0 \\
s_{i-1, j}+\delta\left(v_{i},-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right) \\
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right)
\end{array}\right.
$$

Add edges of weight 0 from source to every other vertex. Provide a free jump to arbitrary starting place.

Example

$$
D_{i, j}=\min \left\{\begin{array}{l}
D_{i-1, j}+w\left(v_{i},-\right) \\
D_{i, j-1}+w\left(-, w_{j}\right) \\
D_{i-1, j-1}+w\left(v_{i}, w_{j}\right)
\end{array}\right.
$$

Consider the words $V=A T$ and $W=A A G T$, and a cost function where $\forall x \neq y: w(x, y)=1$ and $w(x, x)=0$. Then the distance matrix is:

		A	A	G	T
	0	1	2	3	4
A	1	0	1	2	3
T	2	1	1	2	3

The trace matrix is:

		A	A	G	T
	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow
A	\uparrow	\nwarrow	\leftarrow, \nwarrow	\leftarrow	\leftarrow
T	\uparrow	\uparrow	\leftarrow	\leftarrow, \nwarrow	\nwarrow

Two possible alignments are:

$$
\begin{array}{cccc}
A A & - & - & T \\
A & A & G & T \\
\hline- & A & & \\
\hline A & A & G & T
\end{array}
$$

