Homework 1 of Sequence Informatics 2008

Dae-Ki Kang

September 12, 2008

Deadline: September 30, 2008

1. Consider the following sort algorithm (Figure 1) where A is an array with n integers:
```
InsertionSort \((A, n)\) :
begin
(a) for \(i \leftarrow 2\) to \(n\) do
(b) \(\quad k e y \leftarrow A[i]\)
(c) \(\quad j \leftarrow i-1\)
(d) while \(j>0\) and \(A[j]>k e y\) do
(e) \(\quad A[j+1] \leftarrow A[j]\)
(f) \(\quad j \leftarrow j-1\)
(g) \(\quad A[j+1] \leftarrow k e y\)
end.
```

Figure 1: Pseudo-code of Insertion Sort

Give lower and upper bounds on the running time of the InsertionSort using the O (big-Oh) and Ω (big-omega) notation.
2. Consider the following recursive algorithm (Figure 2) where A is an array with n integers:

Give a tight asymptotic bound of the algorithm using the Θ notation.
3. Write a Graphviz DOT file for the following decision tree (Figure 3).

Recursive (A, n) :
 begin

(a) if $i>1$ then
(b) for $i \leftarrow \mathrm{n}-1$ downto 1 do
(c) $\quad A[n] \leftarrow A[i]+A[n]$
(d) $\quad \operatorname{Recursive}(A, n-1)$
end.

Figure 2: Pseudo-code of Recursive Algorithm
4. Write a Graphviz DOT file for the following finite automata (Figure 4).
5. Construct the string matching automation for the pattern $P=a a b a b$ and illustrate its operation on the text string $T=$ aaababaabaababaab.
6. Compute the KMP prefix function π for the pattern $P=a b a b b a b b a b b a b a b b a b b$ when the alphabet is $\Sigma=\{a, b\}$.
7. Briefly describe Boyer-Moore algorithm for string matching. Explain why Boyer-Moore algorithm is sometimes sublinear. For the description of the algorithm, check the following URI.
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching
8. Determine a longest common sequence (LCS) of 10010101 and 010110110.
9. Draw a suffix tree or a generalized suffix tree for the following strings.
(a) "banana"
(b) "cacao"
(c) "bagle" and "beagle".
10. Let a circular string \hat{s} which is constructed by connecting the ending character of the original linear string s to its starting character. Design a linear string matching algorithm for a circular string.
The algorithm should be able to find a match across the boundary of the original string. For example, if the original string is "Beethoven virus", the algorithm can find "rusBe", "sBeetho", "virusBeethoven", "eethoven", "Beethoven virus", etc.

Figure 3: Decision tree of VOTE data set

Figure 4: Finite state automata

