Homework 1 of Sequence Informatics 2008

Dae-Ki Kang

September 12, 2008

Deadline: September 30, 2008

1. Consider the following sort algorithm (Figure 1) where A is an array with n integers:

$\frac{\textbf{InsertionSort}(A,n):}{\textbf{begin}}$

(a)	for $i \leftarrow 2$ to n do
(b)	$key \leftarrow A[i]$
(c)	$j \leftarrow i-1$
(d)	while $j > 0$ and $A[j] > key$ do
(e)	$A[j+1] \leftarrow A[j]$
(f)	$j \leftarrow j-1$
(g)	$A[j+1] \leftarrow key$
end.	

Figure 1: Pseudo-code of Insertion Sort

Give lower and upper bounds on the running time of the InsertionSort using the O (big-Oh) and Ω (big-omega) notation.

2. Consider the following recursive algorithm (Figure 2) where A is an array with n integers:

Give a tight asymptotic bound of the algorithm using the Θ notation.

3. Write a Graphviz DOT file for the following decision tree (Figure 3).

$\frac{\mathbf{Recursive}(A,n):}{\mathbf{begin}}$		
(a) if i	1 > 1 then	
(b)	for $i \leftarrow n - 1$ down to 1 do	
(c)	$A[n] \leftarrow A[i] + A[n]$	
(d)	$\operatorname{Recursive}(A, n-1)$	
end.		

Figure 2: Pseudo-code of Recursive Algorithm

- 4. Write a Graphviz DOT file for the following finite automata (Figure 4).
- 5. Construct the string matching automation for the pattern P = aabab and illustrate its operation on the text string T = aaababaabaabaabaabaaba.
- 7. Briefly describe Boyer-Moore algorithm for string matching. Explain why Boyer-Moore algorithm is sometimes sublinear. For the description of the algorithm, check the following URI.

http://www.cs.utexas.edu/users/moore/best-ideas/string-searching

- 8. Determine a longest common sequence (LCS) of 10010101 and 010110110.
- 9. Draw a suffix tree or a generalized suffix tree for the following strings.
 - (a) "banana"
 - (b) "cacao"
 - (c) "bagle" and "beagle".
- 10. Let a circular string \hat{s} which is constructed by connecting the ending character of the original linear string s to its starting character. Design a linear string matching algorithm for a circular string.

The algorithm should be able to find a match across the boundary of the original string. For example, if the original string is "Beethoven virus", the algorithm can find "rusBe", "sBeetho", "virusBeethoven", "eethoven", "Beethoven virus", etc.

Figure 3: Decision tree of VOTE data set

Figure 4: Finite state automata