
1

1

Dynamic Programming

© Jeff Parker, 2001

Updated Feb 2002

2

Outline

Dynamic Programming is a technique that can be used to reduce the
amount of time needed to solve some problems.

Classic time-space tradeoff - we store intermediate results.

It is not always applicable, but very helpful when it is.

Idea - store solutions to subproblems

Sample problems

Top down and Bottom up

When does Dynamic Programming fail to work?

More problems where Dynamic Programming helps

2

3

Motivation

Computing the Fibonacci numbers recursively provides a good
example of a bad algorithm 1, 1, 2, 3, 5, 8, 13, 21, ...

f(0) = 1

f(1) = 1

f(n) = f(n-1) + f(n-2) for n > 1.

int fib(int n) {

if (n < 0) // Check input parameter

return 0;

if (n < 2) // Deal with base case

return 1;

return f(n-1) + f(n-2); // Recursion

}

4

Why is this so bad?

To compute f(5), we compute f(4) once, f(3) twice, f(2) three
times, and f(1) five times.

We call f a number of times: each call either returns 1 or adds
two numbers. Thus we need to return 1 f(n) times, and to
add them up f(n) - 1 times.

((((1 + 1) + 1) + (1 + 1)) + ((1 + 1) + 1))

Very wasteful

f(1) f(0)

f(2)

f(3)

f(1) f(1) f(0)

f(2)

f(4)

f(1) f(0)

f(2)

f(3)

f(1)

f(5)

3

5

Dynamic Programming
We create a structure to hold previous computations (array knownValues)

When we call the routine, check to see if we have already found a solution.

If so, we use it.

If not, we compute the value as before and store it in our array

static int fib2(int n, int known[]) {

…

if (UNKNOWN != known[n]) // If we already know it

return known[n]; //return pre-computed value

…

known[n] = result; // Save our work for future

...

}

6

Dynamic Programming
static int fib2(int n, int known[]) {

if (n < 0) // Check input parameter

return 0;

if (UNKNOWN != known[n]) // If we already know it

return known[n]; //return pre-computed value

int result = 1; // Common result

if (n > 1) // Make recursive call

result = fib2(n-1, known) + fib2(n-2, known);

known[n] = result; // Save our work for future

return result;

}

4

7

Initializing array knownValues
public class Fibonacci {

static final int UNKNOWN = -1;

public static void main(String[] args) {

if (args.length < 1) { // Check usage.

System.err.println("Usage: Fibonacci val"); return;

}

Integer N = new Integer(args[0]);

int val = N.intValue();

// Create array to hold results and initialize it

int knownValues[] = new int[val+1];

for (int i = 0; i <= val; i++)

knownValues[i] = UNKNOWN;

8

Dynamic Programming
There are two ways to fill in the results: bottom up, or top down.

In top down, we make an initial call, and only compute the values we need.

In bottom up, we start with small values and work up

Our previous function works in either direction.

Top Down: Start computation by calling fib2(100): still works

Bottom up: Precompute with a loop

for (int j = 0; j < val; j++)

fi2(j, knownValues)

Here is a third version of the Fibonacci function that works from bottom up
each time. It uses the insight we have gained to reduce the problem to
bare essentials. This is quite fast, and requires no additional storage

5

9

Iterative Version
static int fib3(int n) {

if (n < 0) return 0;

if (n < 2) return 1;

int first = 1, second = 1, third = 0;

while (n-- > 1) {

third = first + second;

first = second;

second = third;

}

return third;

}

10

Puzzle

2 5 1 6 7 3 2

3 2 6 8 2 9 3

1 7 6 8 5 3 8

8 6 8 3 4 2 1

2 6 3 8 2 3 4

6 7 5 6 8 4 2

6 3 4 6 8 3 6

Problem: given this array, pick a
path that goes from top to
bottom, and maximizes the
values hit

Path must descend with every
step: cannot meander around.

6

11

Puzzle path

Here is a sample path.

The value is

7 + 8 + 8 + 4 + 3 + 8 + 3

It is clear that this isn't the best
we can do. It is not even a local
best. (Tweak the tail of the path
to select 8 rather than 3 - what
other changes do you see?)

But how can we be sure that we
always find the best?

2 5 1 6 7 3 2

3 2 6 8 2 9 3

1 7 6 8 5 3 8

8 6 8 3 4 2 1

2 6 3 8 2 3 4

6 7 5 6 8 4 2

6 3 4 6 8 3 6

12

Algorithm

Look at the second row. It
is easy to decide what the
best path would be if the
puzzle only had two levels

For each new row

For each element of the row

Look at the three (or fewer) choices: pick the best of them

Store the running total for following round

For each square, remember which

spot the path came from (lines)

2 5 1 6 7 3 2

3 2 6 8 2 9 3

1 7 6 8 5 3 8

2 5 1 6 7 3 2

3 2 6 8 2 9 3

1 7 6 8 5 3 8

8 7 12 9 615 16

7

13

Iteration

At each stage, we build on the previous results.

Note that some squares are never selected (the 1 and 2s in first row)

Note that some paths are started, and then dropped (3 to 3)

These will never be used again

This algorithm is bottom-up rather than top-down.

Input to each new round: contents of current row, and the running totals
from previous row. We don't care about prior path yet.

For solution: select the largest total in last row, and follow path back.

2 5 1 6 7 3 2

3 2 6 8 2 9 3

1 7 6 8 5 3 8

8 7 12 9 615 16

8 19 21 23 21 19 24

14

Integer Knapsack Problem

A thief with a knapsack finds a horde of jewels.

He has a limited amount of space in his knapsack

He knows the size (width of rectangle below) and value (area) of each jewel.

Problem - fill his knapsack with greatest value possible.

Sample problem:

{size, value} = {{3, 4}, {4, 5}, {7, 10}, {8, 11}, {9, 13}};
4/3 = 1.33333...,

5/4 = 1.25,

10/7 =1.42,

11/8 =1.375,

13/9 = 1.44444...

Many instances of each type of jewel: some of
greater value/size (and thus more efficient)

In figure below, wish to maximize area within a
fixed length

8

15

Application

Assume that a factory can make several different products.

Some take longer than others.

size == time

Some have higher profit margin than others

value == profit

All work must be done in one shift, to increase the quality.

Problem: find the collection of jobs that maximizes profit.

16

Sample results

{size, value} = {{3, 4}, {4, 5}, {7, 10}, {8, 11}, {9, 13}};

Cap 0 result 0

Cap 1 result 0

Cap 2 result 0

Cap 3 result 4 # Smallest jewel has length 3

Cap 4 result 5

Cap 5 result 5

Cap 6 result 8

Cap 7 result 10 {3, 4} + {4, 5} vs..{7, 10}

Cap 8 result 11

Note {8,11} has more area, but {7,10} is more efficient (higher)

{7, 10} {8, 11}

{7, 10}{4,5}{3,4}

9

17

Prepare the Jewels
class Jewel {

private int size;

private int value;

Jewel(int s, int v) {

size = s;

value = v;

}

int getValue() { return value; }

int getSize() { return size; }

}

static Jewel prices[] = { new Jewel(3, 4), new Jewel(4, 5),

new Jewel(7, 10), new Jewel(8, 11), new Jewel(9, 13) };

18

Sample Recursive Algorithm
// Our initial algorithms do not use dynamic programming

static int knap(int cap, Jewel items[]) {

int max = 0; // max == best we have seen yet

if (0 == cap)

return max; // Base case

for (int i = 0; i < items.length; i++) { // Try each jewel in turn

int space = cap - items[i].getSize(); // What is left after this

if (space >= 0) { // Use jewel and the best we can do with the rest

int t = items[i].getValue() + knap(space, items);

if (t > max)

max = t; // Found something better than previous best

}

}

return max; // Return the best we found

}

10

19

Main Program
// The main program. This is where Java will start

public static void main(String args[]) {

for (int i = 0 ; i < prices.length ; i++) // Display the problem

System.out.println(prices[i]);

Tics time = new Tics(); // Start the global clock

// Solve the problem for knapsacks of size [1..RUNS]

for (int i = 0; i <= RUNS; i++) {

Tics tic = new Tics(); // Start a clock for this problem

int res = knap(i, prices); // Get result

System.out.println("Cap " + i + " result " + res + " took " + tic +
" tics");

}

System.out.println("Took " + time + " tics to solve all of the cases");

}

20

Some Results
Cap 12 result 17 took 2 tics

Cap 13 result 18 took 3 tics

….

Cap 16 result 23 took 5 tics

Cap 17 result 24 took 111 tics

Cap 18 result 26 took 8 tics

...

Cap 28 result 40 took 200 tics

...

Cap 39 result 56 took 11081 tics

Cap 40 result 57 took 17797 tics

Cap 41 result 59 took 12434 tics

Notice

Changes are not smooth

Later cases take a long time

11

21

Time per computation

0

20000

40000

60000

80000

100000

120000

Size (cap)

22

Why does it take so long?

To compute the best we can do with a knapsack of size 13, we make the following recursive
calls. (13 - 3 = 10, 13 - 4 = 9, 13 - 7 = 6, 13 - 8 = 5, 13 - 9 = 4.)

Some values are recomputed may times: see 3 above.

We don't need to compute 8, 11, or 12 to solve the problem for size 13. Can solve Top down.

Jewels[] = = {{3, 4}, {4, 5}, {7, 10}, {8, 11}, {9, 13}};

4

1

13

5

12

6

21

9

2 16

22 1

5

0

3

0

3

127 6

0

0 0

3 23

3

101

4

10

12

23

Minor Improvements
1) Don't make call when there's no space - remove leaves with value 0

2) Since we store jewels in increasing size, break out when space < 0

3) Or store jewels in order of efficiency, so we try better values first.

4) Generate solutions in sorted order - see next slide

5) Branch and Bound

static int knap(int cap, Jewel items[]) {

int max = 0; // max == best we have seen yet

if (0 == cap) return max; // Base case

for (int i = 0; i < items.length; i++) { // Try each jewel in turn

int space = cap - items[i].getSize(); // What is left after this

if (space >= 0) {

int t = items[i].getValue() + knap(space, items);

if (t > max) max = t;

}

return max; // Return the best we found

}

24

Ordering Sets
Results for first two improvements

311614 tics Original

250712 tics Don't make calls when space = 0

133122 tics Break out when space < 0

Can do even better if we generate solutions in order by Jewel size

Algorithm looks at every combination of first choice, second choice, etc

But the sets {Opal, Diamond, Ruby}, {Ruby, Diamond, Opal}and {Ruby,
Opal, Diamond} are not really different: just different order.

By generating the solutions in increasing or decreasing order of jewel size,
we can look at far fewer possibilities (Don't look at all 3! cases above)

Implementation: Try the first jewel 0 or more times. For each attempt, try
the next largest jewel 0 or more times, and then….

13

25

Branch and Bound
Branch and Bound is a way to prune off legal, but fruitless, searches

Jewels[] = {{1, 1}, {2, 3}, {4, 7}, {8, 15}, {16, 100}};

The best we can do is 100/16 per unit of space: most value w/ 16.

There is no way we can extend a value of 15 with only space 8 to beat a score
of 100. Thus we do not need to look at any of the descendants of 8.

Similarly, there is no need to extend the other choices (4, 2, or 1).

For this to work well, you need to have jewels of very different efficiency,
and you need to pursue the best solutions first.

16

80 15 12 14 15

0 4 6 7

100 7 3 1

Size 16 has value 100

Taking jewel of size 1 scores 1,
leaves 15 left. Best we can do with
that is less than 100

1 + 15 * 100/16 < 100

26

Dynamic Programming

However Dynamic Programming does much better
311614 tics Original

250712 tics Don't make calls when space = 0

133122 tics Break out when space < 0

1604 tics Dynamic Programming - two orders of magnitude better

// Initialize an array of solutions

static final int UNKNOWN = -1;

...

int maxKnown[] = new int[RUNS + 1];

for (int i = 0; i <= RUNS; i++)

maxKnown[i] = UNKNOWN;

14

27

New Algorithm
static int knap(int cap, Jewel items[], int maxKnown[]) {

if (maxKnown[cap] != UNKNOWN)

return maxKnown[cap]; // Don't compute this twice

int t, max = 0; // best we have seen yet

for (int i = 0; i < items.length; i++) { // Try each jewel in turn

if ((int space = cap - items[i].getSize()) >= 0) { // Room left?

t = knap(space, items, maxKnown) + items[i].getValue;

if (t> max)

max = t; // Found something better than best

}

}

maxKnown[cap] = max; // Remember the best

return max; // Return the best we found

}

28

Algorithm in action

This graph is smaller because we don't expand starting points we have seen before.

Thus we only need to expand 3, 4, 5, and 6 one time.

Jewels[] = {{3, 4}, {4, 5}, {7, 10}, {8, 11}, {9, 13}};

456

1

9

2 16

2 1

5127 6

0

3 23

3

101

4

10

13

15

29

But all we know is value!
Thief now knows max value of his load - but what choices should he make?

We add a new array to hold the solution, illustrated below

We save time and space if we do not store the whole solution

For each value of cap, we store the size of the last jewel we add rather than
all the jewels, and then lookup the rest of the solution

Recall our example {{3, 4}, {4, 5}, {7, 10}, {8, 11}, {9, 13}}

The array below lets us replace the problem of filling a knapsack of size 15
with the problem of adding a jewel of size 3, and then fill a knapsack of
size 12 (= 15-3). Solve this problem by looking up entry for 12.

Solution for 15 is {3, 4} + {3, 4} + {9, 13}. Representation is not unique:
we store as 3, 3, 9, but we could store as 9, 3, 3 or 3, 9, 3.

0 0 0 3 4 4 3 7 8 9 3 3 3 3 7 3 7
0 1 2 3 4 5 6 7 8 9 10111213141516

30

Translating Array into solution
In effect, the array holds links to earlier values

The array and some of the skips implied. To solve 15, skip to 12, 9, then 0

0 0 0 3 4 4 3 7 8 9 3 3 3 3 7 3 7
0 1 2 3 4 5 6 7 8 9 10111213141516

0 0 0 3 4 4 3 7 8 9 3 3 3 3 7 3 7
0 1 2 3 4 5 6 7 8 9 10111213141516

16

31

New Algorithm
static int knap(int cap, Jewel items[], int maxKnown[], int firstPick[]) {

if (maxKnown[cap] != UNKNOWN)

return maxKnown[cap]; // Don't compute this twice

int t, max = 0; // best we have seen yet

for (int i = 0; i < items.length; i++) { // Try each jewel in turn

if ((int space = cap - items[i].getSize()) >= 0) { // Room left?

t = knap(space, items, maxKnown) + items[i].getValue;

if (t> max) {

max = t; // Found something better than best

first = items[i].getSize(); // Remember size of the last jewel we added

}

}

}

maxKnown[cap] = max; // Remember the best

firstPick[cap] = first; // Remember the jewel

return max; // Return the best we found

}

32

Limits to Dynamic Programming
Why can't we use Dynamic Programming all the time?

Dynamic Programming assumes that you can store enough previous results to
reduce the amount of work.

What if there are too many different sub problems?

Consider the case that the sizes are not integers: say
{{10/3, 4}, {47/7, 5}, {34/5, 10}, {89/11, 11}, {120/13, 13}};

Rather than reducing the problem 13 to problems 10, 9, 6, 5, and 4, we face the
problems 9 2/3, 44/7, etc. A simple array is not enough.

(In fact, we could express all the elements above as a fractions with
denominator 3*5*7*11*13, and solve this case with an array of
3*5*7*11*13*13 items. This may not save us much time, and does not
work if the values are irrational numbers like sqrt(2) and pi.)

17

33

More Limits: Dimension
Consider another case: the solution to the Queens problem. We

could store non-attacking positions for the first three columns,
and use these to decide which positions for the rest of the
columns would be fruitful.

Can we store the prior positions briefly?

Can we search that storage faster than we could compute new
values from scratch?

In general, Dynamic Programming depends upon being able to
characterize previous problems succinctly.

The traveling salesman problem (given a collection of cities, find
a path that starts and ends in the same city with the minimal
path length) has too many sub-problems to store.

34

More good problems
Given a convex polygon, find the triangulation with the smallest total

perimeter.

Here is the a polygon with two triangulations. We wish to minimize the
length of the added lines.

18

35

Insight
What are the subproblems that we need to solve and save?

Vertex A will be connected to vertex C, D, E, or F.
A

B

C

D

E

F

G

Assume that A is connected to D. We can
use this to split our original problem in two.

Then we have two sub-problems: minimizing
the triangulation of the polygon A, B, C, D
and minimizing the triangulation of the
polygon A, D, E, F, G

We then combine optimal solutions from two
halves to get optimal solution to whole.

A 1-dimensional array of known solutions is
not enough for this problem

A

B

C

D

E

F

G

36

References

Sedgewick's Algorithms has a good discussion of these
problems.

Baase and Van Gelder, Computer Algorithms has a chapter
on Dynamic Programming

Cormen, Leiserson, and Rivest, Introduction to Algorithms
discuss the polygon triangulation problem

One of the Advanced Topics Lectures covers non-exact
pattern matching (the problem and algorithm are described
in Baase and Van Gelder)

